MX 6 Let $P(x)=q x^{3}+r x^{2}+r x+q$ where q and r are constants, $q \neq 0$.

7 Given that α is a zero of $P(x), \alpha \neq-1$, which of the following is also a zero?

1
A. $-\frac{1}{\alpha}$
B. $-\frac{q}{\alpha}$
C. $\frac{1}{\alpha}$
D. $\frac{q}{\alpha}$

C
Let the roots be $-1, \alpha$ and β.
Product of roots: $-1(\alpha)(\beta)=-\frac{q}{q}$

$$
\begin{aligned}
-1 \alpha \beta & =-1 \\
\beta & =\frac{1}{\alpha}
\end{aligned}
$$

The third root is $\frac{1}{\alpha}$.

State Mean:
0.51/1

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

