201513 The diagram shows $\triangle A B C$ with sides a $A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$.
(i) Show that $\cos A=\frac{7}{8}$.
(ii) By finding the exact value of $\sin A$, determine the exact value of the area of $\triangle A B C$.

Not to scale
(i)

$$
\begin{aligned}
\cos A & =\frac{8^{2}+6^{2}-4^{2}}{2 \times 8 \times 6} \\
& =\frac{84}{96} \\
& =\frac{7}{8}
\end{aligned}
$$

(ii)

Draw a triangle with $\cos A=\frac{7}{8}$:

State Mean:

0.77

Using Pythagoras' theorem, and letting unknown side be x :

$$
\begin{aligned}
x^{2} & =8^{2}-7^{2} \\
& =15 \\
x & =\sqrt{15} \quad(x>0) \\
\therefore \sin A & =\frac{\sqrt{15}}{8}
\end{aligned}
$$

Now, area of $\triangle A B C=\frac{1}{2} b c \sin A$

$$
\begin{aligned}
& =\frac{1}{2} \times 8 \times 6 \times \frac{\sqrt{15}}{8} \\
& =3 \sqrt{15}
\end{aligned}
$$

State Mean:
0.80

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(a)(i) This part was generally done well by most candidates.

Common problems were:

- using an incorrect formula for the cosine rule
- incorrectly substituting into the correct formula
- attempting to find \cos A using right triangle trigonometry.
(a)(ii) In better responses, candidates used the results from (a)(i), formed a right-angled triangle and used Pythagoras's Theorem to obtain the third side, allowing them to find the exact value of $\sin A$.

Common problems were:

- using an incorrect formula for area
- correctly finding the exact value of $\sin \mathrm{A}$ as $\frac{\sqrt{15}}{8}$ and then using this value as angle A in the area of a triangle formula
- finding the value of angle A and $\sin A$ using the calculator and giving an approximation for the area of the triangle
- not being able to find the exact value of $\sin \mathrm{A}$
- interpreting an exact value to mean 'round off to the nearest whole number'.

