201612 (i) Differentiate $y=x e^{3 x}$.
d (ii) Hence find the exact value of $\int_{0}^{2} e^{3 x}(3+9 x) d x$.
(i) $y=x e^{3 x}$

Using the product rule,

$$
\begin{array}{llrl}
\text { Let } u & =x & & \frac{d u}{d x}=1 \\
\text { Let } v & =e^{3 x} & \frac{d v}{d x}=3 e^{3 x} \\
& \begin{aligned}
\frac{d y}{d x} & =u \frac{d v}{d x}+v \frac{d u}{d x} & \\
& =x \cdot 3 e^{3 x}+e^{3 x} \cdot 1 & \\
& =e^{3 x}+3 x e^{3 x} & \text { State Mean: } \\
& =e^{3 x}(1+3 x) & 0.80
\end{aligned}
\end{array}
$$

1.26

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

BOSTES: Notes from the Marking Centre

(i) Most candidates realised that they needed to use the product rule. Common problems were:

- using the product rule incorrectly
- differentiating $e^{3 x}$ incorrectly.
(ii) The candidates who had successfully answered (d) (i) were more able to recognise the connection and make the appropriate substitution. Common problems were:
- not rewriting the integral in terms of the expression from part (d)(i) and integrating incorrectly
- dividing, instead of multiplying, by 3
- substituting into the integral incorrectly.

