2016
13
d The curve $y=\sqrt{2} \cos \left(\frac{\pi}{4} x\right)$ meets the line $y=x$ at $P(1,1)$, as shown in the diagram.

Find the exact value of the shaded area.

Shaded area $=\int_{0}^{1} \sqrt{2} \cos \left(\frac{\pi}{4} x\right) d x-\frac{1}{2} \times 1 \times 1$
$=\left[\frac{4 \sqrt{2}}{\pi} \sin \frac{\pi}{4} x\right]_{0}^{1}-\frac{1}{2}$
$=\frac{4 \sqrt{2}}{\pi}\left[\sin \frac{\pi}{4}-\sin 0\right]-\frac{1}{2}$
$=\frac{4 \sqrt{2}}{\pi}\left[\frac{1}{\sqrt{2}}-0\right]-\frac{1}{2}$
$=\frac{4}{\pi}-\frac{1}{2}$
$=\frac{8-\pi}{2 \pi} \quad \therefore$ the area is $\frac{8-\pi}{2 \pi}$ units 2

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

BOSTES: Notes from the Marking Centre
Most responses included finding two areas by integration then subtracting them to find the shaded area. Common problems were:

- using incorrect boundary values for either the area under the cosine curve or the area under the line $y=x$. This included using the y-values instead of the x-values.
- not using or reading the Reference Sheet correctly, eg, having an incorrect sign when finding the primitive for the cosine function.
- when integrating $\cos \left(\frac{\pi}{4} x\right)$, multiplying the primitive by $\frac{\pi}{4}$ instead of $\frac{4}{\pi}$
- changing $\sqrt{2}$ to $2^{\frac{1}{2}}$ and then integrating that expression
- using $A=\frac{1}{2} r^{2} \theta$ to calculate the area as though the shaded area was a sector
- not using the fact that $\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and that the question asked for an exact value.

