2016
14 The diagram shows the cross-section of a tunnel and a proposed enlargement.
a

The heights, in metres, of the existing section at 1 metre intervals are shown in Table A.

Table A : Existing heights

x	-2	-1	0	1	2
y	2	2.38	2.5	2.38	2

The heights, in metres, of the proposed enlargement are shown in Table B.

Table B: Proposed heights

x	-2	-1	0	1	2
y	2	2.78	3	2.78	2

Use Trapezoidal rule with the measurements given to calculate the approximate increase in area. * Changed by projectmaths from Simpson's rule.

Form a table using the differences in the y-values:

x	-2	-1	0	1	2
Difference in y	0	0.4	0.5	0.4	0

Using Trapezoidal rule:

$$
\begin{aligned}
\text { Increase } & =\frac{1}{2}[0+0+2(0.4+0.5+0.4)] \\
& =1.3
\end{aligned}
$$

\therefore the increase is $1.3 \mathrm{~m}^{2}$

State Mean:
n.a.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

BOSTES: Notes from the Marking Centre

n.a.

