201714

1
(ii) Using Trapezoidal rule with three function values*, find an approximation to the integral $\int_{0}^{\frac{\pi}{3}} \cos x d x$, leaving your answer in terms of π and $\sqrt{3}$.

* Changed by projectmaths from Simpson's rule. (iii) deleted
(i) $\int_{0}^{\frac{\pi}{3}} \cos x d x=[\sin x]_{0}^{\frac{\pi}{3}}$

$$
\begin{gathered}
=\sin \frac{\pi}{3}-\sin 0 \\
=\frac{\sqrt{3}}{2}-0 \\
=\frac{\sqrt{3}}{2}
\end{gathered}
$$

State Mean: 0.87
(ii) $\int_{0}^{\frac{\pi}{3}} \cos x d x=\frac{\frac{\pi}{3}-0}{2(2)}\left[\cos 0+2 \cos \frac{\pi}{6}+\cos \frac{\pi}{3}\right]$

$$
=\frac{\pi}{12}\left[1+2\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{2}\right]
$$

$$
=\frac{\pi}{12}\left[\frac{3}{2}+\sqrt{3}\right]
$$

$$
=\frac{\pi}{24}[3+2 \sqrt{3}]
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Notes from the Marking Centre

(i) A common problem was incorrectly stating $\int \cos x d x=-\sin x$.

