Want more revision exercises? Get MathsFit HSC Mathematics for \$2.95/topic

2017 14

b

(i) Find the exact value of $\int \cos x \ dx$.

1

2

- (ii) Using Trapezoidal rule with three function values*, find an approximation to the
 - integral $\int_{0}^{3} \cos x \, dx$, leaving your answer in terms of π and $\sqrt{3}$.
 - * Changed by projectmaths from Simpson's rule.
- (iii) deleted

1

(i)
$$\int_{0}^{\frac{\pi}{3}} \cos x \, dx = \left[\sin x \right]_{0}^{\frac{\pi}{3}}$$

$$= \sin \frac{\pi}{3} - \sin 0$$

$$= \frac{\sqrt{3}}{2} - 0$$

$$= \frac{\sqrt{3}}{2}$$
State Mean:
0.87

(ii)
$$\int_{0}^{\frac{\pi}{3}} \cos x \, dx = \frac{\frac{\pi}{3} - 0}{2(2)} \left[\cos 0 + 2 \cos \frac{\pi}{6} + \cos \frac{\pi}{3} \right]$$
$$= \frac{\pi}{12} \left[1 + 2(\frac{\sqrt{3}}{2}) + \frac{1}{2} \right]$$
$$= \frac{\pi}{12} \left[\frac{3}{2} + \sqrt{3} \right]$$
$$= \frac{\pi}{24} \left[3 + 2\sqrt{3} \right]$$
State

State Mean: N.A.

NESA: Notes from the Marking Centre

(i) A common problem was incorrectly stating $\int \cos x \, dx = -\sin x$.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.