201714 The shaded region shown is enclosed by two
d parabolas, each with x-intercepts at $x=-1$ and $x=1$.
The parabolas have equations $y=2 k\left(x^{2}-1\right)$ and $y=k\left(1-x^{2}\right)$, where $k>0$.
Given that the area of the shaded region is 8 , find the value of k.

$$
\begin{aligned}
A=2 \int_{0}^{1} k\left(1-x^{2}\right)-2 k\left(x^{2}-1\right) d x & =8 \\
2 \int_{0}^{1} k-k x^{2}-2 k x^{2}+2 k d x & =8 \\
\int_{0}^{1} 3 k-3 k x^{2} d x & =4 \\
{\left[3 k x-k x^{3}\right]_{0}^{1} } & =4 \\
3 k(1)-k(1)^{3}-0 & =4 \\
3 k-k & =4 \\
2 k & =4 \\
k & =2
\end{aligned}
$$

State Mean:

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

BOSTES: Notes from the Marking Centre

Common problems were:

- making algebraic errors when subtracting the functions
- finding an incorrect primitive
- substituting into k instead of x in the primitive function when evaluating the limits.

