201715 Anita opens a savings account. At the start of each month she deposits $\$ X$ into the b savings account. At the end of the month, after interest is added into the savings account, the bank withdraws $\$ 2500$ from the savings account as a loan repayment. Let M_{n} be the amount in the savings account after the $n^{\text {th }}$ withdrawal.
The savings account pays interest at 4.2% per annum compounded monthly.
(i) Show that after the second withdrawal the amount in the savings account is given by $M_{2}=X\left(1.0035^{2}+1.0035\right)-2500(1.0035+1)$.
(ii) Find the value of X so that the amount in the savings account is $\$ 80000$ after the last withdrawal of the fourth year.
(i) $4.2 \% \mathrm{pa}=0.35 \%$ per month $=0.0035$ per month, 4 years $=48$ months.

$$
\begin{aligned}
M_{1} & =X \times 1.0035-2500 \\
M_{2} & =M_{1} \times 1.0035+X \times 1.0035-2500 \\
& =(X \times 1.0035-2500) \times 1.0035+X \times 1.0035-2500 \\
& =X \times 1.0035^{2}-2500 \times 1.0035+X \times 1.0035-2500 \\
& =X\left(1.0035^{2}+1.0035\right)-2500(1.0035+1)
\end{aligned}
$$

State Mean:

(ii)

$$
\begin{aligned}
M_{48} & =X\left(1.0035^{48}+1.0035^{47}+\ldots+1.0035\right)-2500\left(1.0035^{47}+1.0035^{46}+\ldots+1\right) \\
& =X\left(1.0035+1.0035^{2}+\ldots+1.0035^{48}\right)-2500\left(1+1.0035^{2}+\ldots+1.0035^{47}\right)
\end{aligned}
$$

Using geometric series and $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$:

$$
M_{48}=x\left[\frac{1.0035\left(1.0035^{48}-1\right)}{1.0035-1}\right]-2500\left[\frac{1\left(1.0035^{48}-1\right)}{1.0035-1}\right]=80000
$$

$52.351 X-130421=80000$

$$
x=4019 \text { (nearest whole) }
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Notes from the Marking Centre

(i) In most responses, students were able to find the correct expression for M_{1} and many correctly showed how to obtain the expression for M_{2}.
Common problems were:

- attempting to work backwards from the given expression for M_{2}
- omitting brackets or not closing brackets
- not including a deposit of $\$ X$ at the start of each month
- writing the given statement for M_{2} without any working
- not checking their answer for (b)(i) was the same as the one required before continuing onto (b)(ii).
(ii) problems were:
- not using the appropriate value for n (48 months)

HSC examination papers © NSW Education Standards Authority for and on behalf of the Crown in right of State of NSW

- using incorrect values for a and n for each series
- incorrectly applying the S_{n} formula for a geometric series.

