A trigonometric function $f(x)$ satisfies the condition $\int_{0}^{\pi} f(x) d x \neq \int_{\pi}^{2 \pi} f(x) d x$. Which function could $f(x)$ be?
A. $f(x)=\sin (2 x)$
B. $f(x)=\cos (2 x)$
C. $f(x)=\sin \left(\frac{x}{2}\right)$
D. $f(x)=\cos \left(\frac{x}{2}\right)$

D
Consider the graphs of each of the four options.
This is the graph of $y=\cos \frac{x}{2}$, between 0 and 2π :
As $\int_{0}^{\pi} \cos \frac{x}{2} d x=-\int_{\pi}^{2 \pi} \cos \frac{x}{2} d x$
then $\int_{0}^{\pi} \cos \frac{x}{2} d x \neq \int_{\pi}^{2 \pi} \cos \frac{x}{2} d x$.

State Mean:

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

