201815 The diagram shows the region bounded by the b curve $y=\frac{1}{x+3}$ and the lines $x=0, x=45$ and $y=0$. The region is divided into two parts of equal area by the line $x=k$, where k is a positive integer. What is the value of the integer k, given that the two parts have equal area?

$$
\begin{aligned}
\int_{0}^{k} \frac{1}{x+3} d x & =\int_{k}^{45} \frac{1}{x+3} d x \\
{[\ln (x+3)]_{0}^{k} } & =[\ln (x+3)]_{k}^{45} \\
\ln (k+3)-\ln (0+3) & =\ln (45+3)-\ln (k+3) \\
\ln (k+3)-\ln 3 & =\ln 48-\ln (k+3) \\
2 \ln (k+3) & =\ln 48+\ln 3 \\
\ln (k+3)^{2} & =\ln 144 \\
(k+3)^{2} & =144 \\
k+3 & =12 \\
k & =9
\end{aligned}
$$

State Mean:

1.81

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Marking Feedback

Skills addressed:

- equating the two parts of equal area using definite integrals, finding primitive functions and solving the resulting logarithmic equation
- knowing that $k>0$ and discarding $k=-15$

Areas for students to improve include:

- using the correct order when substituting limits into the primitive function
- solving logarithmic equations

