projectmaths.com.au

HSC Worked Solutions

k 1 ŕ

d...

Want more revision exercises? Get MathsFit for \$2.95/topic - from projectmaths

2018 15 The diagram shows the region bounded by the curve
$$y = \frac{1}{x+3}$$
 and the lines $x = 0, x = 45$ and $y = 0$. The region is divided into two parts of equal area by the line $x = k$, where k is a positive integer. What is the value of the integer k , given that the two parts have equal area?

1

$$\int_{0}^{k} \frac{1}{x+3} dx = \int_{k}^{45} \frac{1}{x+3} dx$$

$$\left[\ln(x+3) \right]_{0}^{k} = \left[\ln(x+3) \right]_{k}^{45}$$

$$\ln(k+3) - \ln(0+3) = \ln(45+3) - \ln(k+3)$$

$$\ln(k+3) - \ln 3 = \ln 48 - \ln(k+3)$$

$$2\ln(k+3) = \ln 48 + \ln 3$$

$$\ln(k+3)^{2} = \ln 144$$

$$(k+3)^{2} = 144$$

$$k+3 = 12$$

$$k = 9$$

State Mean: 1.81

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

NESA: Marking Feedback

Skills addressed:

- equating the two parts of equal area using definite integrals, finding primitive functions and solving the • resulting logarithmic equation
- knowing that k > 0 and discarding k = -15•

Areas for students to improve include:

- using the correct order when substituting limits into the primitive function •
- solving logarithmic equations •