201815 The shaded region is enclosed by the curve c $y=x^{3}-7 x$ and the line $y=2 x$ as shown in the diagram. The line $y=2 x$ meets the curve $y=x^{3}-7 x$ at $O(0,0)$ and $A(3,6)$. DO NOT prove this.
(i) Use integration to find the area of the shaded region.
(ii) Verify that one application of Simpson's rule gives the exact area of the shaded region.
The point P is chosen on the curve

$y=x^{3}-7 x$ so that the tangent at P is
parallel to the line $y=2 x$ and the x-coordinate of P is positive.
(iii) Show that the coordinates of P are $(\sqrt{3},-4 \sqrt{3})$.
(iv) Find the area of $\triangle O A P$.
(i) Area $=\int_{0}^{3}\left(2 x-\left(x^{3}-7 x\right)\right) d x$

$$
=\int_{0}^{3}\left(9 x-x^{3}\right) d x
$$

$$
=\left[\frac{9 x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{3}
$$

$$
=\frac{9(3)^{2}}{2}-\frac{3^{4}}{4}-0
$$

$=20.25 \quad \therefore$ the area is $20.25 \mathrm{u}^{2}$.
(ii) Using $f(x)=9 x-x^{3}$,
$\int_{0}^{3}\left(9 x-x^{3}\right) d x \approx \frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]$ $=\frac{3-0}{6}[f(0)+4 f(1.5)+f(3)]$
$=\frac{1}{2}[0+4(10.125)+0]$
$=\frac{1}{2}[0+4(10.125)+0]$

$$
=20.25
$$

\therefore the area is $20.25 \mathrm{u}^{2}$.
(iii) $y=x^{3}-7 x$

$$
y^{\prime}=3 x^{2}-7=2
$$

$$
3 x^{2}=9
$$

$$
x^{2}=3
$$

$$
x=\sqrt{3}(\text { as } x>0)
$$

$$
y(\sqrt{3})=(\sqrt{3})^{3}-7(\sqrt{3})
$$

$$
=3 \sqrt{3}-7 \sqrt{3}
$$

$$
=-4 \sqrt{3}
$$

$$
\therefore P(\sqrt{3},-4 \sqrt{3})
$$

(iv) $O A=\sqrt{3^{2}+6^{2}}$

$$
=\sqrt{45}
$$

$$
=3 \sqrt{5}
$$

Perp. distance from $(\sqrt{3},-4 \sqrt{3})$ to $2 x-y=0$:

$$
\begin{aligned}
d & =\frac{|2(\sqrt{3})-1(-4 \sqrt{3})+0|}{\sqrt{2^{2}+1^{2}}} \\
& =\frac{6 \sqrt{3}}{\sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 3 \sqrt{5} \times \frac{6 \sqrt{3}}{\sqrt{5}} \\
& =9 \sqrt{3} \quad \therefore \text { area is } 9 \sqrt{3} \mathrm{u}^{2} .
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Marking Feedback

Skills addressed:

- knowing the required area could be represented by $\mathrm{A}=\int_{a}^{b}(f(x)-g(x)) d x$ where a and b are x-values
- simplifying $f(x)-g(x)$ before finding the primitive function and calculating the definite integral
- using the correct formula for Simpson's rule and understanding that three function values are required for one application of the rule
- using their simplified function from (ci) to calculate their function values
- using a table to show their three functions values
- equating the gradient function for the tangent at P and the gradient of the line $y=2 x$ and solving for x
- finding the y-coordinate by substitution
- understanding that the triangle is not right angled
- using the formula for perpendicular distance provided in the Reference Sheet

Areas for students to improve include:

- writing correct statements, involving definite integrals, to use in area problems
- applying absolute value of functions correctly
- using the formula from the reference sheet and understanding the meaning of $\frac{b-a}{6}$
- finding the correct function to use in Simpson's rule
- showing substitutions used to find the y-coordinate
- performing calculations with surds
- understanding that the equation of the line used in the perpendicular distance formula needs to be in general form
- finding the correct angle at the origin to use in the sine rule

