Want more revision exercises? Get MathsFit for $\$ 2.95 /$ topic - from projectmaths
2018 16c Kara deposits an amount of $\$ 300000$ into an account which pays compound interest of 4% per annum, added to the account at the end of each year. Immediately after the interest is added, Kara makes a withdrawal for expenses for the coming year. The first withdrawal is $\$ P$. Each subsequent withdrawal is 5% greater than the previous one. Let $\$ A_{n}$ be the amount in the account after the nth withdrawal.
(i) Show that $A_{2}=300000(1.04)^{2}-P[(1.04)+(1.05)]$
(ii) Show that $A_{3}=300000(1.04)^{3}-P\left[(1.04)^{2}+(1.04)(1.05)+(1.05)^{2}\right]$.
(i) Show that there will be money in the account when $\left(\frac{105}{104}\right)^{n}<1+\frac{3000}{P}$.
(i) $A_{1}=300000 \times 1.04-P$

$$
\begin{aligned}
A_{2} & =(300000 \times 1.04-P) \times 1.04-P \times 1.05 \\
& =300000 \times 1.04^{2}-P(1.04+1.05)
\end{aligned}
$$

(ii) $A_{3}=300000 \times 1.04^{2}-P(1.04+1.05) \times 1.04-P \times 1.05^{2}$

$$
=300000 \times 1.04^{3}-P\left(1.04^{2}+1.04 \times 1.05+1.05^{2}\right)
$$

(iii) $\left.A_{n}=300000 \times 1.04^{n}-P\left(1.04^{n-1}+1.04^{n-2} \times 1.05+\ldots+1.04 \times 1.05^{n-2}+1.05^{n-1}\right)\right)$

A geometric series with $a=1.04^{n-1}, r=\frac{1.05}{1.04}=\frac{105}{104}, n=n$:
$A_{n}=300000 \times 1.04^{n}-P\left[\frac{1.04^{n-1}\left(\left(\frac{105}{104}\right)^{n}-1\right)}{\frac{105}{104}-1}\right]>0$
$300000 \times 1.04^{n}-P\left[\frac{1.04^{n-1}\left(\left(\frac{105}{104}\right)^{n}-1\right)}{\frac{1}{104}}\right]>0$
$300000 \times 1.04^{n}-104 P\left[1.04^{n-1}\left(\left(\frac{105}{104}\right)^{n}-1\right)\right]>0$
$3000 \times 1.04^{n}-1.04 P\left[1.04^{n-1}\left(\left(\frac{105}{104}\right)^{n}-1\right)\right]>0$
$\begin{aligned} 3000 \times 1.04^{n}-P\left[1.04^{n}\left(\left(\frac{105}{104}\right)^{n}-1\right)\right]>0 & \\ 3000-P\left(\left(\frac{105}{104}\right)^{n}-1\right)>0 & \\ \frac{3000}{P}-\left(\frac{105}{104}\right)^{n}+1>0 & \therefore\left(\frac{105}{104}\right)^{n}<1+\frac{3000}{P}\end{aligned}$

State Mean:

0.47

0.3
0.23

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Marking Feedback

Skills addressed:

HSC examination papers © Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales

- having a clear understanding of the steps required to 'show' a result
- presenting all work clear sequential steps
- providing a detailed progression from A_{1} through to A_{2}
- responding to the direction 'show that' and providing a detailed progression from A_{2} to A_{3}
- being able to achieve an expression for A_{n}
- using the sum of a geometric progression formula to arrive at the given result
- demonstrating a high degree of accuracy and skill in algebraic manipulation

Areas for students to improve include:

- using brackets correctly
- remembering to increase and subtract the withdrawal, that is, using $A_{2}=A_{1}(1.04)-P(1.05)$
- knowing that the third withdrawal was $P(1.05)^{2}$ and using $A_{3}=A_{2}(1.04)-P(1.05)^{2}$
- using patterns to obtain an expression for A_{n}
- using the correct values for the first term and common ratio when finding the sum of the geometric progression

