20187 The diagram shows the graph of $y=f(x)$ with intercepts at $x=-1,0,3$ and 4 . The area of shaded region R_{1} is 2 .
The area of shaded region R_{2} is 3 .

It is given that $\int_{0}^{4} f(x) d x=10$. What is the value of $\int_{-1}^{3} f(x) d x$?
A. 5
B. 9
C. 11
D. 15

C

$$
\text { Given } \int_{-1}^{0} f(x) d x=-2, \int_{3}^{4} f(x) d x=-3 \text { and } \int_{0}^{4} f(x) d x=10
$$

Firstly, $\int_{0}^{4} f(x) d x=\int_{0}^{3} f(x) d x+\int_{3}^{4} f(x) d x$

$$
10=\int_{0}^{3} f(x) d x-3 \quad \therefore \int_{0}^{3} f(x) d x=13
$$

$$
\text { Also, } \begin{aligned}
\int_{-1}^{3} f(x) d x & =\int_{-1}^{0} f(x) d x+\int_{0}^{3} f(x) d x \\
& =-2+13 \\
& =11
\end{aligned}
$$

State Mean:

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

