projectmaths.com.au

HSC Worked Solutions

Want more revision exercises? Click here for MathsFit for \$2.95/topic - from projectmaths

- **19 12 M d** The diagram shows the graph of $y = \frac{3x}{x^2 + 1}$. The region enclosed by the graph, the x-axis and the line x = 3 is shaded. Calculate the exact value of the area of the shaded region. **Area** $= \int_{0}^{3} \frac{3x}{x^2 + 1} dx \checkmark$ $= \frac{3}{2} \int_{0}^{3} \frac{2x}{x^2 + 1} dx$
 - $= \frac{3}{2} \left[\ln(x^2 + 1) \right]_0^3 \checkmark$

$$= \frac{3}{2} \left[\ln(3^{2} + 1) - \ln(0^{2} + 1) \right]$$
$$= \frac{3}{2} \left[\ln 10 - \ln 1 \right]$$

 $= \frac{3}{2} \ln 10 \qquad \therefore \text{ area is } \frac{3}{2} \ln 10 \text{ units}^2. \checkmark$

State Mean: 2.25/3

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Marking Feedback:

Students should:

 $\hfill\square$ use definite integrals to find areas

In better responses, students were able to:

□ find the correct fraction in front of the integral in order to create a numerator which is the derivative of the denominator

Areas for students to improve include:

 \Box integrating correctly to reach a logarithmic function

- □ substituting limits correctly
- □ showing all working
- \Box reading the question carefully
- $\hfill\square$ using brackets accurately