1914 The regular hexagon $A B C D E F$ has sides of length 1.
M C The diagonal $A E$ and the side $C D$ are produced to meet at the point $X$.
Copy or trace the diagram into your writing booklet. Find the exact length of the line segment $E X$, justifying your answer.


Angle sum of hexagon $=720^{\circ}$
Internal angle of regular hexagon $=120^{\circ} \checkmark$

$$
\begin{aligned}
\angle A F E & =120^{\circ} \\
\therefore \angle F E A & =30^{\circ} \text { (base angles of isosceles triangle AFE equal) } \\
\angle A E D & =120^{\circ}-30^{\circ} \\
& =90^{\circ} \\
\therefore \angle D E X & =90^{\circ} \text { (straight angle) } \\
\angle E D C & =60^{\circ} \text { (exterior angle of regular hexagon) }
\end{aligned}
$$



Using triangle $E D X$ :

$$
\frac{x}{1}=\tan 60^{\circ}
$$

$$
x=\sqrt{3} \quad \therefore \text { the length of } E X \text { is } \sqrt{3} \text { units. }
$$

[^0]
## Marking Feedback:

## Students should:

$\square$ calculate the interior or exterior angle of a polygoncalculate the equal angles in an isosceles triangle given the third angleuse exact ratios or the sine rule in trigonometry to evaluate the length of a side

## In better responses, students were able to:

correctly name anglessubstantiate all mathematical statements usedunderstand the need to prove $\angle D E X=90^{\circ}$
## Areas for students to improve include:

setting out a proof in a logical order, stating reasons at each step
[^0]:    * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

