projectmaths.com.au

3

Want more revision exercises? Click <u>here</u> for <u>MathsFit</u> for \$2.95/topic - from projectmaths

- **19 16** A person wins \$1 000 000 in a competition and decides to invest this money in an
- **M** a account that earns interest at 6% per annum compounded quarterly. The person decides to withdraw \$80 000 from this account at the end of every fourth quarter.

Let *A* be the amount remaining in the account after the *n*th withdrawal.

- (i) Show that the amount remaining in the account after the withdrawal at the end of the eighth quarter is $A_2 = 1\ 000\ 000 \times 1.015^8 80\ 000(1 + 1.015^4)$.
- (ii) For how many years can the full amount of \$80 000 be withdrawn?

(i) 6% per annum = 1.5% per quarter	
$A_1 = 1\ 000\ 000\ imes\ 1.015^4 - 80\ 000\ \checkmark$	
$A_2 = (1\ 000\ 000\ \times\ 1.015^4 - 80\ 000)\ \times\ 1.015^4 - 80\ 000$	
$= 1\ 000\ 000\ \times\ 1.015^8 - 80\ 000\ \times\ 1.015^4 - 80\ 000$	State Mean:
= 1 000 000 × 1.015 ⁸ - 80 000(1 + 1.015 ⁴) \checkmark	1.08/2
(ii) $A_n = 1\ 000\ 000 \times 1.015^{4n} - 80\ 000(1 + 1.015^4 + 1.015^8 + + 1.015^{4(n-1)})$	
Consider the series with $a = 1$, $r = 1.015^4$, $n = n$:	
$A_n = 1\ 000\ 000\ \times\ 1.015^{4n} - 80\ 000[\frac{1((1.015^4)^n - 1)}{1.015^4 - 1}] \checkmark$	
= 1 000 000 × 1.015 ⁴ⁿ - 1 303 706(1.015 ⁴ⁿ - 1) \leq 80 000 \checkmark	
1 000 000 × 1.015 ⁴ⁿ - 1 303 706 × 1.015 ⁴ⁿ + 1 303 706 \leq 80 000	
$303 \ 706 \times 1.015^{4n} \ge 1 \ 223 \ 706$	
$1.015^{4n} \geq \frac{1223706}{303706}$	
4 <i>n</i> ln 1.015 ≥ ln $\frac{1223706}{303706}$	
$n \ge \frac{\ln \frac{1223706}{303706}}{4\ln 1.015}$	
≥ 23.4000	State Mean:
∴ \$80 000 can be withdrawn annually for 24 years. 🖌	0.58/3

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Marking Feedback:

Students should:

- \Box find the amount remaining in the account after the withdrawal at the end of the fourth and eighth quarters by explicitly showing the progression from A_1 to A_2
- □ present all working out with clear and sequential steps
- \Box use patterns to generate an expression for An as a summation of terms
- \square use the correct value for the common ratio when finding the sum of a geometric progression formula

HSC examination papers ${\ensuremath{\mathbb C}}$ Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales

In better responses, students were able to:

□ solve logarithmic equations

Areas for students to improve include:

- \Box understanding the steps required to 'show' a result
- □ improving accuracy and skill in algebraic manipulation of logarithmic equations