1916 A person wins $\$ 1000000$ in a competition and decides to invest this money in an M a account that earns interest at 6% per annum compounded quarterly. The person decides to withdraw $\$ 80000$ from this account at the end of every fourth quarter.

Let A be the amount remaining in the account after the nth withdrawal.
(i) Show that the amount remaining in the account after the withdrawal at the end of the eighth quarter is $A_{2}=1000000 \times 1.015^{8}-80000\left(1+1.015^{4}\right)$.
(ii) For how many years can the full amount of $\$ 80000$ be withdrawn?
(i) 6% per annum $=1.5 \%$ per quarter

$$
\begin{aligned}
A_{1} & =1000000 \times 1.015^{4}-80000 \\
A_{2} & =\left(1000000 \times 1.015^{4}-80000\right) \times 1.015^{4}-80000 \\
& =1000000 \times 1.015^{8}-80000 \times 1.015^{4}-80000 \\
& =1000000 \times 1.015^{8}-80000\left(1+1.015^{4}\right)
\end{aligned}
$$

State Mean:
1.08/2
(ii) $A_{n}=1000000 \times 1.015^{4 n}-80000\left(1+1.015^{4}+1.015^{8}+\ldots+1.015^{4(n-1)}\right)$

Consider the series with $a=1, r=1.015^{4}, n=n$:

$$
\begin{aligned}
A_{n} & =1000000 \times 1.015^{4 n}-80000\left[\frac{1\left(\left(1.015^{4}\right)^{n}-1\right)}{1.015^{4}-1}\right] \\
& =1000000 \times 1.015^{4 n}-1303706\left(1.015^{4 n}-1\right) \leq 80000
\end{aligned}
$$

$1000000 \times 1.015^{4 n}-1303706 \times 1.015^{4 n}+1303706 \leq 80000$

$$
\begin{aligned}
303706 \times 1.015^{4 n} & \geq 1223706 \\
1.015^{4 n} & \geq \frac{1223706}{303706} \\
4 n \ln 1.015 & \geq \ln \frac{1223706}{303706} \\
n & \geq \frac{\ln \frac{1223706}{303706}}{4 \ln 1.015} \\
& \geq 23.4000 \ldots
\end{aligned}
$$

$\therefore \$ 80000$ can be withdrawn annually for 24 years. \checkmark

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

Marking Feedback:

Students should:

\square find the amount remaining in the account after the withdrawal at the end of the fourth and eighth quarters by explicitly showing the progression from A_{1} to A_{2}present all working out with clear and sequential stepsuse patterns to generate an expression for $A n$ as a summation of termsuse the correct value for the common ratio when finding the sum of a geometric progression formula

In better responses, students were able to:solve logarithmic equations

Areas for students to improve include:

\square understanding the steps required to 'show' a resultimproving accuracy and skill in algebraic manipulation of logarithmic equations

