1916 particle moves in a straight line, starting at the origin.
M b Its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=e^{\cos t}-1$, where t is in seconds.

The diagram shows the graph of the velocity against time. Using one application of Trapezoidal rule*, estimate the
position of the particle when it first comes to rest. Give your answer correct to two decimal places. *Changed from Simpson's rule by projectmaths.

$$
\begin{aligned}
v=e^{\cos t}-1 & =0 \\
e^{\cos t} & =1 \\
e^{\cos t} & =e^{0} \\
\cos t & =0 \\
t & =\frac{\pi}{2}, \ldots v \\
& =\frac{\pi}{8}\left[\left(e^{\cos 0}-1\right)+\left(e^{\cos \frac{\pi}{2}}-1\right)+2\left(e^{\cos \frac{\pi}{4}}-1\right)\right] \\
\int_{0}^{\frac{\pi}{2}}\left(e^{\cos t}-1\right) d t & \approx \frac{\pi}{2}\left[f(0)+f\left(\frac{\pi}{2}\right)+2 f\left(\frac{\pi}{4}\right)\right] \\
& =\frac{\pi}{8}\left[e-1+e^{0}-1+2 e^{\frac{1}{\sqrt{2}}}-2\right] \\
& =\frac{\pi}{8}\left[e-3+2 e^{\frac{1}{\sqrt{2}}}\right] \\
& =1.482247314 \ldots \\
& =1.48(2 \text { dec pl })
\end{aligned}
$$

State Mean:
(0.89/3)

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

Marking Feedback:
 Students should:

quote the Reference Sheet for Simpson's rule and understand the meaning of $\frac{b-a}{6}$ compared to the alternative formula using $\frac{h}{3}$

In better responses, students were able to:

understand the time when the particle comes to rest occurs when $v=0$show substitutions into Simpson's rule
Areas for students to improve include:

HSC examination papers © Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales
\square understanding the difference between radians and degrees when using trigonometric functionsunderstanding that three function values are required for one application of the rulesimplifying expressions that involve a fractional common difference within a fraction

