1916 The diagram shows the region R, bounded by the curve
M $y=x^{r}$, where $r \geq 1$, the x-axis and the tangent to the curve at the point $(1,1)$.
(i) Show that the tangent to the curve at $(1,1)$ meets the x-axis at $\left(\frac{r-1}{r}, 0\right)$.
(ii) Using the result of part (i), or otherwise, show that the area of the region R is $\frac{r-1}{2 r(r+1)}$.

2

2
(iii) Find the exact value of r for which the area of R is a maximum.
(i) $y=x^{r}$

$$
\frac{d y}{d x}=r x^{r-1}
$$

Substitute $x=1$:

$$
\begin{aligned}
\frac{d y}{d x}(1) & =r(1)^{r-1} \\
& =r
\end{aligned}
$$

Equation of tangent:

$$
\begin{aligned}
y-1 & =r(x-1) \\
y & =r x-r+1
\end{aligned}
$$

Substitute $y=0$:

$$
\begin{aligned}
0 & =r x-r+1 \\
r x & =r-1 \\
x & =\frac{r-1}{r}
\end{aligned}
$$

$$
\therefore R\left(\frac{r-1}{r}, 0\right)
$$

(ii) Area $=\int_{0}^{1} x^{r} d x-\frac{1}{2} \times\left(1-\frac{r-1}{r}\right) \times 1$

$$
=\left[\frac{x^{r+1}}{r+1}\right]_{0}^{1}-\frac{1}{2} \times \frac{r-r+1}{r} \times 1
$$

$$
=\left[\frac{1^{r+1}}{r+1}-\frac{0^{r+1}}{r+1}\right]-\frac{1}{2 r}
$$

$$
=\frac{1}{r+1}-\frac{1}{2 r}
$$

$$
=\frac{2 r-(r+1)}{2 r(r+1)}
$$

$$
=\frac{r-1}{2 r(r+1)}
$$

$$
\text { (iii) } A=\frac{r-1}{2 r(r+1)}
$$

$$
A=\frac{r-1}{2 r^{2}+2 r}
$$

$$
\frac{d A}{d r}=\frac{\left(2 r^{2}+2 r\right) \cdot 1-(r-1)(4 r+2)}{\left(2 r^{2}+2 r\right)^{2}}
$$

$$
=\frac{2 r^{2}+2 r-\left(4 r^{2}-2 r-2\right)}{\left(2 r^{2}+2 r\right)^{2}}
$$

$$
=\frac{-2 r^{2}+4 r+2}{\left(2 r^{2}+2 r\right)^{2}}=0
$$

$$
r^{2}-2 r-1=0
$$

$$
r=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)}
$$

$$
=\frac{2 \pm \sqrt{8}}{2}
$$

$$
=\frac{2 \pm 2 \sqrt{2}}{2}
$$

$$
=1+\sqrt{2}
$$

$$
(\text { as } r>0)
$$

Consider neighbourhood of $r=1+\sqrt{2}$:

r	2.4	$1+\sqrt{2}$	2.5
A^{\prime}	>0	0	<0

\therefore maximum area when $r=1+\sqrt{2}$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

Marking Feedback:

Students should:

find the derivative of an expression with the treatment of the exponent of rrealise that $1^{r+1}=1$ to find the equation of the tangentuse subtraction of areas to find the area of the given regionuse the quotient rule from the Reference Sheet, and remember to square the denominatorjustify the maximum value by using the simplest method
In better responses, students were able to:

\square understand that the tangent meets the x-axis at $y=0$clearly present all the steps in a 'show' questionsolve quadratic equationsshow numerical results when testing for concavity using the first derivative table

Areas for students to improve include:

carefully examining the given diagram to select the most appropriate and simplest methodconsidering the marks available for each part to gauge the required amount of working outusing the answer provided in the question as a checking mechanism, rather than working backwardsshowing all algebraic manipulations in a 'show' question