2015 Mr Ali, Ms Brown and a group of students were camping at
MA the site located at $P$.

Mr Ali walked with some of the students on a bearing of $035^{\circ}$ for 7 km to location $A$.

Ms Brown, with the rest of the students, walked on a bearing of $100^{\circ}$ for 9 km to location $B$.
(a) Show that the angle $A P B$ is $65^{\circ}$.

(b) Find the distance $A B$.
(c) Find the bearing of Ms Brown's group from Mr Ali's group.

Give your answer correct to the nearest degree.
(a) As $100-35=65$, then angle $A P B=65^{\circ}$.
(c)

(b) Using cosine rule,

$$
\begin{aligned}
A B^{2} & =7^{2}+9^{2}-2(7)(9) \cos 65^{\circ} \\
& =76.75009902 \ldots \\
A B & =8.760713385 \ldots \\
& =8.76(2 \text { dec pl })
\end{aligned}
$$

$\therefore$ the distance is 8.76 km .

## HSC Marking Feedback

## Question 15 (a)

Using cosine rule,

$$
\begin{array}{rlr}
\cos \angle P A B & =\frac{7^{2}+8.76^{2}-9^{2}}{2(7)(8.76)} & \\
& =0.364787997 \ldots & \text { State Mean: } \\
& & 0.95 / 1 \\
\angle P A B & =68.60546371 \ldots & 1.68 / 2 \\
& =69 \text { (nearest whole) } \checkmark & 1.18 / 2
\end{array}
$$

As $69-35=34$, and $180-34=146$, the bearing of $B$ from $A$ is $146^{\circ}$.

## Students should:

- interpret information given in written form
- solve a two-dimensional problem using graphical techniques
- use true bearings to find an angle measured in degrees.

In better responses, students were able to:

- show given information on the diagram provided
- transfer true bearings onto the diagram
- use supplementary and alternate angles in the diagram.


## Areas for students to improve include:

- showing all working
- indicating the given information on the diagram provided.


## Question 15 (b)

## Students should:

- establish the cosine rule to solve practical problems involving true bearings and compass bearings
- correctly substitute side lengths and the included angle into the cosine rule.

In better responses, students were able to:

- substitute the angle found into the cosine rule
- apply the cosine rule correctly
- show all working.


## Areas for students to improve include:

- evaluating expressions correctly after substitution into the cosine rule
- using the correct mode on the calculator
- substituting correctly into the cosine rule
- showing working out in the space provided
- using the Reference Sheet to obtain correct the trigonometric formula.


## Question 15 (c)

## Students should:

- use the sine rule correctly to solve practical problems
- use trigonometric ratios to solve problems involving true bearings
- evaluate trigonometric expressions using angles and side lengths.

In better responses, students were able to:

- use the sine or cosine rule correctly to find an angle
- calculate the bearing using the internal angle of a triangle
- use the diagram to identify the correct quadrant of the required bearing.


## Areas for students to improve include:

- correctly substituting corresponding angles and sides into the sine or cosine rule
- using an internal angle to determine the corresponding true bearing.

[^0]
[^0]:    * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

