2016 Sketch the graph of the curve $y=-x^{3}+3 x^{2}-1$, labelling the stationary points and
$y=-x^{3}+3 x^{2}-1$

$$
\begin{aligned}
\frac{d y}{d x}=-3 x^{2}+6 x & =0 \\
-3 x(x-2) & =0 \\
x & =0,2
\end{aligned}
$$

Substitute into y :

$$
\begin{aligned}
y(0) & =-0^{3}+3(0)^{2}-1 \\
& =-1 \\
y(2) & =-(2)^{3}+3(2)^{2}-1 \\
& =3
\end{aligned}
$$

\therefore stationary points at $(0,-1)$ and $(2,3)$.

$$
\frac{d^{2} y}{d x^{2}}=-6 x+6
$$

$$
\frac{d^{2} y}{d x^{2}}(0)=-6(0)+6>0
$$

\therefore minimum $(0,-1)$.

$$
\frac{d^{2} y}{d x^{2}}(2)=-6(2)+6<0
$$

\therefore maximum $(2,3)$.

$$
\text { Also, } \begin{aligned}
\frac{d^{2} y}{d x^{2}}=-6 x+6 & =0 \\
6 x & =6 \\
x & =1
\end{aligned}
$$

Substitute into y :

$$
\begin{aligned}
y(1) & =-(1)^{3}+3(1)^{2}-1 \\
& =1
\end{aligned}
$$

Possible point of inflection at $(1,1)$
Consider neighbourhood of $x=1$:

x	0	1	2
$\frac{d^{2} y}{d x^{2}}$	>0	0	<0

As sign change, then point of inflection at (1, 1).

HSC Marking Feedback

Question 16

Looking for Mathematics Advanced Topic Revision?
Go to our MathsFit page for downloads @ \$2.95 each

Students should:

- avoid only using a table of values to sketch a curve
- ensure calculus is used to find stationary points and inflection points when sketching polynomial functions
- determine the nature of all stationary point they have found
- clearly label information derived for their curve on their graph
- set working out clearly and logically.

HSC examination papers © Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales

In better responses, students were able to:

- find the first and second derivatives
- find the stationary points by setting the first derivative equal to 0 and solving
- solve a quadratic equation
- find the point of inflection by setting the second derivative equal to 0 and solving
- find y-coordinates
- determine the nature of stationary points
- prove the concavity change for the point of inflection
- draw smooth curves and label important information on the drawing
- show all working.

Areas for students to improve include:

- practising simple differentiation, factorisation and substitution
- practising solving quadratic equations with a negative leading term
- drawing large diagrams that are fully labelled, with some thought about scale
- understanding how to determine the nature of stationary points
- understanding the difference between a stationary point and a point of inflection
- understanding the difference between a point of inflection and a horizontal point of inflection.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

