2018 (a) Differentiate $e^{2 x}(2 x+1)$
MA
(b) Hence, find $\int(x+1) e^{2 x} d x$.
(a) Using the product rule, \checkmark

Let $u=e^{2 x} \quad \frac{d u}{d x}=2 e^{2 x}$
Let $v=2 x+1 \quad \frac{d v}{d x}=2$

$$
\begin{aligned}
\frac{d}{d x}\left[e^{2 x}(2 x+1)\right] & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =e^{2 x} \cdot 2+(2 x+1) \cdot 2 e^{2 x} \\
& =2 e^{2 x}+2 e^{2 x}(2 x+1) \\
& =2 e^{2 x}+4 x e^{2 x}+2 e^{2 x} \\
& =4 x e^{2 x}+4 e^{2 x} \\
& =4 e^{2 x}(x+1)
\end{aligned}
$$

(b) From part (a), $\left.\int 4 e^{2 x}(x+1) d x=e^{2 x}(2 x+1)\right]$

$$
\int(x+1) e^{2 x} d x=\frac{1}{4} e^{2 x}(2 x+1)+c
$$

HSC Marking Feedback

Question 18 (a)

Students should:

- understand and use the product rule to differentiate functions of the form $f(x) g(x)$
- use brackets around u or v when they have more than term.

In better responses, students were able to:

- recognise the function as a product
- apply the product rule by identifying u and v and their derivatives respectively
- apply the product rule with correct use of brackets
- fully factorise the derivative.

Areas for students to improve include:

- using the product rule on the Reference Sheet to differentiate
- writing each component of the product rule explicitly
- using brackets correctly to show a product involving more than one term
- fully factorising the derivative to support their attempt in the next part
- consulting the Reference Sheet for the derivative of exponential functions.

Question 18 (b)

Looking for Mathematics Advanced Topic Revision?
Go to our MathsFit page for downloads @ \$2.95 each

- appreciate that the wording of the question involves 'hence'
- recognise the relationship between integration and differentiation.

In better responses, students were able to:

- engage with part (a) to demonstrate the reciprocal combination
- find the integral using a fully factorised derivative
- manipulate the previous answer to enable working backwards to find the requested integral.

Areas for students to improve include:

- factorising completely
- identifying 'hence' as a key word requiring use of information obtained in the previous part - understanding that questions worth one mark require a simple step.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

