2019 Prove that $\sec \theta-\cos \theta=\sin \theta \tan \theta$
MA

$$
\begin{aligned}
\mathrm{LHS} & =\sec \theta-\cos \theta \\
& =\frac{1}{\cos \theta}-\cos \theta \\
& =\frac{1-\cos ^{2} \theta}{\cos \theta} \\
& =\frac{\sin ^{2} \theta}{\cos \theta} \\
& =\sin \theta \times \frac{\sin \theta}{\cos \theta} \\
& =\sin \theta \tan \theta \\
& =\text { RHS }
\end{aligned}
$$

HSC Marking Feedback

Students should:

Looking for Mathematics Advanced Topic Revision?
Go to our MathsFit page for downloads @ \$2.95 each

- use the Reference Sheet to find the trigonometric identities
- work from the left-hand side to prove the right-hand side or vice versa
- set out their work clearly and logically
- identify the trigonometric relationship used, for example, $1-\cos ^{2} \theta=\sin ^{2} \theta$
- manipulate fractions carefully.

In better responses, students were able to:

- identify the trigonometric relationships involved in the question, including the inverse trigonometric relationships
- establish a common denominator
- set out their work and simplify correctly
- use clear techniques to provided correct solution
- demonstrate a strong understanding of manipulating fractions and common denominators.

Areas for students to improve include:

- practising the manipulation of fractions involving trigonometric identities
- showing each step when rearranging trigonometric functions
- practising working with an expression on the left-hand side of an equation to prove that it equals the right-hand side
- understanding the difference between a trigonometric identity proof and a trigonometric equation.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

