2020 Kenzo is driving his car along a road while his MA friend records the velocity of the car, $v(t)$, in km / h every minute over a 5 -minute period. The table gives the velocity $v(t)$, at time t hours.
The distance covered by the car over the

t	0	$\frac{1}{60}$	$\frac{2}{60}$	$\frac{3}{60}$	$\frac{4}{60}$	$\frac{5}{60}$
$v(t)$	60	55	65	68	70	67

5 -minute period is given by $\int_{0}^{\frac{5}{60}} v(t) d t$.
Use the trapezoidal rule and the velocity at each of the six time values to find the approximate distance in kilometres the car has travelled in the 5-minute period.

Give your answer correct to one decimal place,

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{b-a}{2 n}\left\{f(a)+f(b)+2\left[f\left(x_{1}\right)+\ldots+f\left(x_{n-1}\right)\right]\right\} \\
\int_{0}^{\frac{5}{60}} v(t) d t & \approx \frac{\frac{5}{60}-0}{2(5)}[60+67+2(55+65+68+70)] \\
& =5.35833333 \ldots \\
& =5.4(1 \text { dec pl) }
\end{aligned}
$$

State Mean:
1.32/2
\therefore Kenzo travelled approximately 5.4 km.

HSC Marking Feedback

Students should:

- demonstrate understanding of equal sub-intervals in the Trapezoidal rule
- identify the correct number of function values
- substitute the strip heights correctly into the Trapezoidal rule.

In better responses, students were able to:

- identify the correct number of values to use in the Trapezoidal rule
- substitute directly into the Trapezoidal rule
- find a correct numerical expression.

Areas for students to improve include:

- determining the correct number of function values
- simplifying fractions
- understanding the substitutions necessary for the Trapezoidal rule which is found on the Reference Sheet
- using strip heights rather than t-values in the substitution.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

