20
MA

21 Hot tea is poured into a cup.
The temperature of tea can be modelled by $T=25+70(1.5)^{-0.4 t}$, where T is the temperature of the tea, in degrees Celsius, t minutes after it is poured.
(a) What is the temperature of the tea 4 minutes after it has been poured?
(b) At what rate is the tea cooling 4 minutes after it has been poured?
(c) How long after the tea is poured will it take for its temperature to reach 55
(a) $T=25+70(1.5)^{-0.4 t}$

Substitute $t=4$:

$$
\begin{aligned}
T & =25+70(1.5)^{-0.4(4)} \\
& =61.58912515 \ldots \\
& =61.6(1 \text { dec } \mathrm{pl})
\end{aligned}
$$

\therefore the temperature is 61.6°.
(b) $\frac{d T}{d t}=70 \times \ln 1.5 \times-0.4(1.5)^{-0.4 t}$

$$
=-28 \ln 1.5 \times(1.5)^{-0.4 t}
$$

Substitute $t=4$:

$$
\begin{aligned}
\frac{d T}{d t}(4) & =-28 \ln 1.5 \times(1.5)^{-0.4(4)} \\
& =-5.934345433 \ldots \\
& =-5.9(1 \text { dec } \mathrm{pl})
\end{aligned}
$$

\therefore the temperature is dropping at $5.9^{\circ} / \mathrm{min}$.
(c) Substitute $T=55$:

$$
\begin{aligned}
& 55=25+70(1.5)^{-0.4 t} \\
& 70(1.5)^{-0.4 t}=30 \\
& 1.5^{-0.4 t}=\frac{3}{7} \\
& \ln 1.5^{-0.4 t}=\ln \frac{3}{7} \\
&-0.4 t \ln 1.5=\ln \frac{3}{7} \\
&-0.4 t=\ln \frac{\ln \frac{3}{7}}{\ln 1.5} \\
& t=-\frac{1}{0.4} \ln \frac{\ln \frac{3}{7}}{\ln 1.5} \\
& t=5.224234117 \ldots \\
&=5 \min 13 \sec (\text { nearest } 10.98 / 1 \\
& 0.88 / 2 \\
& 2.31 / 3
\end{aligned}
$$

\therefore it will take 5 minutes 13 seconds.

HSC Marking Feedback

Question 21 (a)
Students should:

- use a calculator to find a numerical solution.

In better responses, students were able to:

- show substitution of $t=4$ into the correct equation for temperature
- state the correct rounded answer for temperature.

Areas for students to improve include:

- refraining from writing a bald answer only
- correctly writing the answer from the calculator display.

Question 21 (b)

Looking for Mathematics Advanced Topic Revision? Go to our MathsFit page for downloads @ \$2.95 each

Students should:

- differentiate exponential functions involving a base other than e
- understand the two-step solution requiring a substitution into the derivative
- differentiate a power function to find the instantaneous rate of change in a real-life situation
- state an appropriate conclusion regarding the instantaneous rate of change.

In better responses, students were able to:

- use the Reference Sheet to differentiate $70(1.5)^{-0.4 t}$ correctly, showing all factors
- show substitution of $t=4$ into $\frac{d T}{d t}$
- conclude with the correct answer for the rate.

Areas for students to improve include:

- understanding the difference between average rate and instantaneous rate
- identifying instantaneous rate as a derivative
- using the Reference Sheet to correctly differentiate exponentials with base other than e
- checking the calculator display when rounding.

Question 21 (c)

Students should:

- develop, manipulate and solve an equation involving exponential functions
- recognise and use the inverse relationship between logarithms and exponential functions in a practical context
- use the formula $\frac{d}{d x}\left(a^{x}\right)=(\ln a) a^{x}$.

In better responses, students were able to:

- make (1.5) ${ }^{-0.4 t}$ the subject correctly
- take logarithms of both sides correctly
- apply logarithmic properties efficiently
- divide by a negative value correctly.

Areas for students to improve include:

- applying order of operations in the solution of an equation involving an exponential function
- demonstrating correct use of logarithmic laws
- refraining from using guess and check
- associating the concept of a rate to a derivative
- carefully checking values from one line of working to the next.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

