22 The diagram shows a regular decagon (ten-sided shape with all sides equal and all interior angles equal).
The decagon has centre O.
The perimeter of the shape is 80 cm .
By considering triangle $O A B$, calculate the area of the ten-sided shape.
Give your answer in square centimetres, correct to one decimal place.
As $80 \div 10=8$, then $A B=8 \mathrm{~cm}$.
As $360 \div 10=36$, angle $A O B=36^{\circ}$.

As $\triangle A O B$ is isosceles, then $O M$ is perpendicular to $A B$ and $B M$ is 4 cm .

As $\angle A O B=36^{\circ}$, then $\angle B O M=18^{\circ}$, and hence $\angle O B M=72^{\circ}$. Also, let $O M=h$.

$$
\begin{aligned}
& \frac{h}{4}=\tan 72^{\circ} \\
& h=4 \tan 72^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area } \triangle O A B=\frac{1}{2} \times A B \times h \\
& =\frac{1}{2} \times 8 \times 4 \tan 72^{\circ} \\
& =20 \tan 72^{\circ} \checkmark \\
& \text { Area of decagon }=10 \times 16 \tan 72^{\circ} \\
& =492.4293659 . . . \\
& =492.4(1 \mathrm{dec} \mathrm{pl})
\end{aligned}
$$

\therefore the area is $492.4 \mathrm{~cm}^{2}$.

HSC Marking Feedback

Students should:

- determine the length of one side of a regular decagon given the perimeter
- use the sine rule to calculate the side length of a triangle
- find the area of a triangle using the sine rule
- find the area of the decagon using multiple steps.

In better responses, students were able to:

- calculate the internal angles of the triangle
- find the perpendicular height of one triangle correctly
- use the sine rule to find the length of the triangle.

Areas for students to improve include:

- recognising that the triangles are isosceles
- rounding to one decimal place
- distinguishing between the perpendicular height and slant height of a triangle
- using correct substitutions into the sine rule.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

