2023 A continuous random variable, X, has the following probability density functions.
MA

$$
f(x)= \begin{cases}\sin x & \text { for } 0 \leq x \leq k \\ 0 & \text { for all other values of } \mathrm{k}\end{cases}
$$

(a) Find the value of k.
(b) Find $P(X \leq 1)$. Give your answer correct to four decimal places.
(a)

$\int_{0}^{k} \sin x d x=1$	(b) $P(X \leq 1)=\int_{0}^{1} \sin x d x$	
$[-\cos x]_{0}^{k}=1$	$=[-\cos x]_{0}^{1}$	
$-\cos k-(-\cos 0)=1$	$=-\cos 1-(-\cos 0)$	
$-\cos k+1=1$	$=-\cos 1+1$	
$\cos k=0$	$=0.459697694 \ldots$	State Mean:
$k=\frac{\pi}{2}$	$=0.4597(4 \mathrm{dec} \mathrm{pl}) \checkmark$	$\begin{aligned} & 1.20 / 2 \\ & 0.87 / 2 \end{aligned}$

HSC Marking Feedback

Question 23 (a)

Students should:

- understand the relationship between probability density functions and integration
- use the Reference Sheet to find the correct anti-derivative of $\sin x$
- recognise that the sum of all probabilities of a probability density function is equal to 1 , ie the definite integral is equal to 1
- know how to find k using the probability density function.

Looking for Mathematics Advanced Topic Revision?
Go to our MathsFit page for downloads @ \$2.95 each

In better responses, students were able to:

- display an understanding of the definition of a probability density function
- integrate correctly
- substitute bounds correctly
- solve the trigonometric equation, and recognise the need for radians in the context of calculus.

Areas for students to improve include:

- using the Reference Sheet for probability density functions
- solving trigonometric equations
- using the Reference Sheet to correctly express the anti-derivative of $\sin x$ as $-\cos x$ as opposed to $\cos x$
- knowing that the area under a probability density function is equal to 1
- understanding the need to use radians in calculus.

Question 23 (b)

Students should:

- understand the link between continuous random variables and probability
- use calculus to find probabilities
- show all steps involved in evaluating a definite integral
- understand the need for radians in calculus.

In better responses, students were able to:

- write down the correct definite integral
- integrate and substitute bounds correctly
- evaluate correctly, using radians
- round answer to 4 decimals places correctly as stated in the question.

Areas for students to improve include:

- finding the correct definite integral
- showing the ability to integrate correctly and apply correct limits
- giving a solution correctly in radians
- understanding the meaning of $P(X \leq 1)$ as equating to evaluating the integral of the probability density function between 0 and 1 .

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

