2024 The circle $x^{2}-6 x+y^{2}+4 y-3=0$ is reflected in the x-axis.
Sketch the reflected circle, showing the coordinates of the centre and the radius.

$$
\begin{aligned}
x^{2}-6 x+y^{2}+4 y-3 & =0 \\
x^{2}-6 x+y^{2}+4 y & =3 \\
x^{2}-6 x+9+y^{2}+4 y+4 & =3+9+4 \\
(x-3)^{2}+(y+2)^{2} & =16
\end{aligned}
$$

Circle centre $(3,-2)$, radius 4 units. \checkmark
Reflecting about x-axis means new circle has centre at $(3,2)$ and radius 4 units.

HSC Marking Feedback

Students should:

- transform the equation by completing the square on both x and y terms
- reflect in the x-axis by algebraically replacing y with $(-y)$, or graphically after sketching the original circle
- sketch a reflected circle showing the centre and radius.

In better responses, students were able to:

Looking for Mathematics Advanced Topic Revision?
Go to our MathsFit page for downloads @ \$2.95 each

- show all necessary working to complete the square
- state the coordinates of the centre and radius of the original circle
- substitute y in the original equation with $(-y)$, ensuring that $y^{2}>0$
- state the coordinates of the centre and radius of the reflected circle
- sketch the original circle and then the reflected circle clearly showing the centre and radius
- use appropriate scale to show suitable x - and y-intercepts
- find the horizontal width and vertical height of the circle (N-E-W-S).

Areas for students to improve include:

- reflecting in the x-axis, either graphically or by replacing y in the original equation with $(-y)$
- answering the question by including a sketch
- completing the square and drawing circles when the centre is not at the origin
- recognising that the radius is the square root of the right-hand side of the equation
- checking working if the equation involves a negative radius
- sketching circles by showing the centre and radius.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

