2028 In a particular country, the hourly rate of pay for adults who work is normally
MA distributed with a mean of $\$ 25$ and a standard deviation of $\$ 5$.
(a) Two adults who both work are chosen at random.

Find the probability that at least one of them earns between $\$ 15$ and $\$ 30$ per hour.
(b) The number of adults who work is equal to three times the number of adults who do not work.
One adult is chosen at random.
Find the probability that the chosen adult works and earns more than $\$ 25$ per hour.
(a) $\mu=25$ and $\sigma=5$ and $z=\frac{x-\mu}{\sigma}$:

When $x=15, z=\frac{15-25}{5}$

$$
=-2
$$

When $x=30, z=\frac{30-25}{5}$

$$
=1
$$

P (between $\$ 15$ and $\$ 30$)

$$
\begin{aligned}
& =P(-2<z<1) \\
& =P(z<1)-P(z<-2) \\
& =0.84-0.025 \\
& =0.815
\end{aligned}
$$

$\therefore P($ does not earn between $\$ 15$ and $\$ 30)$

$$
\begin{aligned}
& =1-0.815 \\
& =0.185
\end{aligned}
$$

$P($ at least one earns between $\$ 15$ and $\$ 30)$

$$
\begin{aligned}
& =1-P(\text { none earns between } \$ 15 \text { and } \$ 30) \\
& =1-0.185^{2} \\
& =0.965775 \\
& =0.966(3 \text { dec } \mathrm{pl})
\end{aligned}
$$

(b) P (adult works $)=\frac{3}{4}$,
$P($ earns more than $\$ 25)=\frac{1}{2}$.
P (adult works and earns more than $\$ 25 / \mathrm{h}$)

$$
\begin{aligned}
& =\frac{3}{4} \times \frac{1}{2} \\
& =\frac{3}{8}
\end{aligned}
$$

HSC Marking Feedback

Question 28 (a)

Students should:

- use the empirical results of a normal distribution
- link probability with a normal distribution
- find the probability of a given event using z-scores.

In better responses, students were able to:

- find the required z-scores
- calculate the probability of one adult within the given range of values from the normal distribution
- recognise the problem as a two-stage event
- use a tree diagram to illustrate the sample space for a two-stage event
- recognise that 'at least one' means one or more
- recognise 'at least' as a complementary event
- understand that the area above the mean in a normal distribution is $\frac{1}{2}$.

Areas for students to improve include:

- using a diagram to represent the normal distribution
- referring to the Reference Sheet for percentages between z-scores
- understanding that the normal distribution is a bell-shaped curve
- using a tree diagram for multi-stage events
- showing all steps in calculation of the required probability.

Question 28 (b)

Students should:

- use complementary events to calculate probability
- recognise that the sum of the probabilities is equal to 1
- find the probability of two simultaneous events.

In better responses, students were able to:

- interpret a ratio as a probability
- identify the mean as having a z-score of 0 and a probability of $\frac{1}{2}$
- clearly state the probabilities as given in the question
- recognise that $P(A$ and $B)=P(A) \times P(B)$.

Areas for students to improve include:

- recognising the difference between two-stage probability and conditional probability
- defining the independent probabilities
- writing the $\%$ sign if the value represents a percentage
- understanding the role of the mean in a probability distribution
- identifying the conjunction 'and' in a probability context to imply multiplication.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

