29 The diagram shows the graph of $y=c \ln x, c>0$.
MA
(a) Show that the equation of the tangent to $y=c \ln x$, at $x=p$, where $p>0$ is
$y=\frac{c}{p} x-c+c \ln p$.
(b) Find the value of c such that the tangent from part (a) has a gradient of 1 and passes through the origin.

(a) $y=c \ln x$

$$
\frac{d y}{d x}=\frac{c}{x}
$$

$$
\frac{d y}{d x}(p)=\frac{c}{p}
$$

Also, substitute $x=p$ in y :
$y(p)=c \ln p$
Using $(p, c \ln p)$ and gradient $=\frac{c}{p}$:

$$
\begin{aligned}
y-c \ln p & =\frac{c}{p}(x-p) \\
y-c \ln p & =\frac{c}{p} x-c \\
y & =\frac{c}{p} x-c+c \ln p
\end{aligned}
$$

(b) $y=\frac{c}{p} x-c+c \ln p$

As passes through origin, substitute $x=0, y=0$:

$$
\begin{aligned}
& 0=\frac{c}{p}(0)-c+c \ln p \\
& c=c \ln p \\
& 1=\ln p \\
& p=e \\
& \text { As } \frac{d y}{d x}(p)=\frac{c}{p}, \text { then } \frac{d y}{d x}(e)=\frac{c}{e}=1 \\
& \therefore c=e
\end{aligned}
$$

State Mean:
1.06/2
0.79/2

HSC Marking Feedback

Question 29 (a)

Students should:

- differentiate a logarithmic function
- determine the gradient at a given point
- calculate the y-coordinate at a given point
- derive the equation of a tangent using the point-gradient formula.

In better responses, students were able to:

- find the correct derivative of the given log function
- calculate the gradient of the tangent at $x=p$
- find the y-coordinate at $x=p$
- use point-gradient formula to find the equation of the tangent.

Looking for Mathematics Advanced Topic Revision?
Go to our Maths Fit page for downloads @ $\$ 2.95$ each

Areas for students to improve include:

- identifying c as a constant when taking the derivative of the logarithmic function
- differentiating logarithmic functions
- stating the derivative in terms of x
- noting that a point coincides with a line if it satisfies the equation of that line
- substituting the x-coordinate into the derivative to find the gradient before substituting into a formula
- showing the substitution of values into the formulae.

Question 29 (b)

Students should:

- substitute a coordinate into the equation of a tangent to find an unknown value
- solve a logarithmic equation.

In better responses, students were able to:

- \quad set the gradient from part (a) equal to 1
- write the relationship between c and p
- substitute $(0,0)$ into the equation of the tangent
- solve an equation involving logarithms
- use simultaneous equations to solve the equation for c.

Areas for students to improve include:

- identifying the gradient in the equation of a straight line
- showing correct substitution of a point into a linear equation
- solving equations containing logarithms
- clearly writing the solution for the required variable.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

