30 The diagram shows two parabolas $y=4 x-x^{2}$ and $y=a x^{2}$, where $a>0$.

The two parabolas intersect at the origin, O, and at A.
(a) Show that the x-coordinate of A is $\frac{4}{a+1}$.
(b) Find the value of a such that the shaded area is $\frac{16}{3}$.

2

4
(a) $a x^{2}=4 x-x^{2}$

$$
\begin{aligned}
2\left(\frac{4}{a+1}\right)^{2}-(a+1) \frac{\left(\frac{4}{a+1}\right)^{3}}{3}-0 & =\frac{16}{3} \\
\frac{32}{(a+1)^{2}}-\frac{64(a+1)}{3(a+1)^{3}} & =\frac{16}{3} \\
\frac{32}{(a+1)^{2}}-\frac{64}{3(a+1)^{2}} & =\frac{16}{3} \\
96-64 & =16(a+1)^{2}
\end{aligned}
$$

$\therefore A$ has x-coordinate of $\frac{4}{a+1}$.
(b) Area $=\int_{0}^{\frac{4}{a+1}}\left(4 x-x^{2}-a x^{2}\right) d x=\frac{16}{3}$

$$
\begin{aligned}
& \int_{0}^{\frac{4}{a+1}}\left(4 x-(1+a) x^{2}\right) d x=\frac{16}{3} \\
& {\left[2 x^{2}-(a+1) \frac{x^{3}}{3}\right]_{0}^{\frac{4}{a+1}}=\frac{16}{3}}
\end{aligned}
$$

(by multiplying by $3(a+1)^{2}$) $16(a+1)^{2}=32$

$$
(a+1)^{2}=2
$$

$$
a+1= \pm \sqrt{2}
$$

$$
a=-1+\sqrt{2}
$$

HSC Marking Feedback

Question 30 (a)

Students should:

- show their working clearly and coherently moving from one step to the next
- include many steps in their proofs
- read the question carefully to understand what result they are required to reach.

In better responses, students were able to:

- solve the quadratic equations simultaneously

Looking for Mathematics Advanced Topic Revision?
Go to our MathsFit page for downloads @ \$2.95 each

- use brackets correctly
- clearly write the steps involved to 'show' the given result.
- use brackets correctly
- clearly write the steps involved to 'show' the given result.

Areas for students to improve include:

- practising 'show' questions
- knowing the different methods of solving quadratic equations.

Question 30 (b)

Students should:

- know and apply each step involved in finding a definite integral
- substitute both the limits into a primitive in the correct order
- solve carefully for a, being mindful of careless algebraic errors
- check their two solutions for the value of a to ensure their final answer is valid
- factorise like terms before finding a primitive.

In better responses, students were able to:

- understand the link to part (a) in writing the correct definite integral
- understand how to find the area between two curves
- obtain a correct integral containing correct quadratic expression and integrate correctly
- substitute the correct limits, including 0
- recognise the link made through factorising out x^{2} before the integration step, or factorising out x^{3} before solving for a
- recognise the fact that the value of a must be positive in their final solution.

Areas for students to improve include:

- using general algebra skills in factorising and solving equations
- knowing the processes involved in evaluating a definite integral.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

