HSC Worked Solutions

projectmaths.com.au

1

2

1

- **MA** 11 (a) Sketch the graph of $y = \ln x$ in the space provided. **SQ** (b) Use the trapezoidal rule with three function values to find an approximation to $\int_{1}^{3} \ln x \, dx$.
 - (c) State whether the approximation found in part (b) is greater than or less than the exact value of $\int_{1}^{3} \ln x \, dx$. Justify your answer.

(a) (b) V 1 2 3 х $y = \ln x$ 0 ln2 ln3 ln*x* $\int_{1}^{3} \ln x \, dx \approx \frac{b-a}{2n} \{f(a) + f(b) + 2[f(x_1) + \dots f(x_{n-1})]\}$ 0 2 3 1 $=\frac{1}{2}\{0+\ln 3+2\ln 2\}$ $=\frac{1}{2}(\ln 3 + 2\ln 2)$ = 1.242453325... = 1.24 (2 dec pl)(c) The approximation using the trapezoidal rule is less than the exact value because $y = \ln x$ is concave down and the trapezia are under the curve.

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Looking for **Mathematics Advanced** Topic Revision? Go to our <u>MathsFit</u> page for downloads – just \$2.95