MA
11 (a) Sketch the graph of $y=\ln x$ in the space provided.
(b) Use the trapezoidal rule with three function values to find an approximation to $\int_{1}^{3} \ln x d x$.
(c) State whether the approximation found in part (b) is greater than or less than the exact value of $\int_{1}^{3} \ln x d x$. Justify your answer.
(a)

(b)

x	1	2	3
$\ln x$	0	$\ln 2$	$\ln 3$

$\int_{1}^{3} \ln x d x \approx \frac{b-a}{2 n}\left\{f(a)+f(b)+2\left[f\left(x_{1}\right)+\ldots f\left(x_{n-1}\right)\right]\right\}$
$=\frac{1}{2}\{0+\ln 3+2 \ln 2\}$
$=\frac{1}{2}(\ln 3+2 \ln 2)$
= 1.242453325...
$=1.24$ (2 dec pl)
(c) The approximation using the trapezoidal rule is less than the exact value because $y=\ln x$ is concave down and the trapezia are under the curve.

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

