MA 36 An island initially has 16100 trees. The number of trees increases by 1% per
SP $\quad \begin{gathered}\text { Band } \\ 2-6\end{gathered} \quad$ annum. The people on the island cut down 1161 trees at the end of each year.
(a) Show that after the first year there are 15100 trees.
(b) Show that at the end of 2 years the number of trees remaining is given by the expression $T_{2}=16100 \times(1.01)^{2}-1161(1+1.01)$.
(c) Show that at the end of n years the number of trees remaining is given by the expression $T_{n}=116100-100000 \times(1.01)^{n}$.
(d) For how many years will the people on the island be able to cut down 1161 trees annually?
(a) $T_{1}=16100 \times 1.01-1161$

$$
=15100
$$

(b) $T_{2}=T_{1} \times 1.01-1161$

$$
\begin{aligned}
& =(16100 \times 1.01-1161) \times 1.01-1161 \\
& =16100 \times(1.01)^{2}-1161 \times 1.01-1161 \\
& =16100 \times(1.01)^{2}-1161(1+1.01)
\end{aligned}
$$

(c) Using this recursive rule,

$$
T_{3}=16100 \times(1.01)^{3}-1161\left(1+1.01+1.01^{2}\right)
$$

Similarly,

$$
T_{n}=16100 \times(1.01)^{n}-1161\left(1+1.01+1.01^{2}+\ldots+1.01^{n-1}\right)
$$

Using $a=1, r=1.01, n=n, S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$:

$$
\begin{aligned}
T_{n} & =16100 \times(1.01)^{n}-1161\left[\frac{1\left(1.01^{n}-1\right)}{1.01-1}\right] \\
& =16100 \times(1.01)^{n}-116100\left(1.01^{n}-1\right) \\
& =16100 \times(1.01)^{n}-116100 \times(1.01)^{n}+116100 \\
& =116100-100000 \times(1.01)^{n}
\end{aligned}
$$

(d) $116100-100000 \times(1.01)^{n}=0$

$$
\begin{aligned}
100000 \times(1.01)^{n} & =116100 \\
1.01^{n} & =1.161 \\
\ln 1.01^{n} & =\ln 1.161 \\
n \ln 1.01 & =\ln 1.161 \\
n & =\frac{\ln 1.161}{\ln 1.01} \\
& =15.00268734 \ldots \ldots \quad \therefore 15 \text { years. }
\end{aligned}
$$

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

