MA SP	36 Band	An island initially has 16 100 trees. The number of trees increases by 1% per annum. The people on the island cut down 1161 trees at the end of each year.	
	2-6	(a) Show that after the first year there are 15 100 trees.	1
		(b) Show that at the end of 2 years the number of trees remaining is given by the expression $T_2 = 16\ 100 \times (1.01)^2 - 1161(1 + 1.01)$.	2
		(c) Show that at the end of n years the number of trees remaining is given by the expression $T_n = 116\ 100 - 100\ 000 \times (1.01)^n$.	2
		(d) For how many years will the people on the island be able to cut down 1161 trees annually?	1

(a) $T_1 = 16\ 100 \times 1.01 - 1161$

= 15 100

- (b) $T_2 = T_1 \times 1.01 1161$
 - $= (16\ 100 \times 1.01 1161) \times 1.01 1161$
 - $= 16\ 100\ \times\ (1.01)^2 1161\ \times\ 1.01 1161$

 $= 16\ 100\ \times\ (1.01)^2 - 1161(1\ +\ 1.01)$

(c) Using this recursive rule,

$$T_3 = 16\ 100 \times (1.01)^3 - 1161(1 + 1.01 + 1.01^2)$$

Similarly,

 $T_n = 16\ 100\ \times\ (1.01)^n - 1161(1\ +\ 1.01\ +\ 1.01^2\ +\ ...\ +\ 1.01^{n-1})$

Using $a = 1, r = 1.01, n = n, S_n = \frac{a(r^n - 1)}{r - 1}$:

$$T_n = 16\ 100\ \times\ (1.01)^n - 1161\left[\frac{1(1.01^n - 1)}{1.01 - 1}\right]$$

= 16\ 100\ \times\ (1.01)^n - 116\ 100(1.01^n - 1)
= 16\ 100\ \times\ (1.01)^n - 116\ 100\ \times\ (1.01)^n + 116\ 100
= 116\ 100 - 100\ 000\ \times\ (1.01)^n = 0
100\ 000\ \times\ (1.01)^n = 116\ 100
1.01^n = 1.161
ln 1.01^n = ln 1.161
n ln 1.01 = ln 1.161
n = \frac{ln 1.161}{ln 1.01}
= 15.00268734..... \therefore 15 years.

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Looking for **Mathematics Advanced** Topic Revision? Go to our <u>MathsFit</u> page for downloads @ \$2.95 each

HSC examination papers © Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales