TG 4 An object is moving on the x-axis.
ADI
The graph shows the velocity, $\frac{d x}{d t}$, of the object as a function of time t.
The coordinates of the points shown on the graph are $A(2,1), B(4,5), C(5,0)$ and $D(6,-5)$.
The velocity is constant for $t \geq 6$.
(a) Use the trapezoidal rule to estimate the distance travelled between $t=0$ and $t=4$, using 2 strips*. *: projectmaths
(b) The object is initially at the origin.
 When is the displacement of the object decreasing?
(c) Estimate the time at which the object returns to the origin. Justify your answer.
(d) Sketch the displacement x as a function of time.
(a) Distance $=\frac{2}{2}[0+5+2(1)]$

$$
=7
$$

\therefore the object has travelled approximately 7 units.
(b) The velocity is positive until C. The object stops and starts moving back towards the origin. This means the displacement is decreasing after C. \therefore after 5 seconds.
(c) From the origin to C the area under the curve is approximately $7+\frac{1}{2} \times 1 \times 5=9 \frac{1}{2}$.

Let $x=$ time elapsed after 6 seconds:

$$
\text { Area } \begin{aligned}
=\frac{1}{2} \times 1 \times 5+5 \times x & =9 \frac{1}{2} \\
2 \frac{1}{2}+5 \times x & =9 \frac{1}{2} \\
5 x & =7 \\
x & =1.4
\end{aligned}
$$

Alternatively, ignore the 2 triangles, so that the area of the rectangle must be 7 . (from (a))

$$
\begin{aligned}
5 \times \text { width } & =7 \\
\text { width } & =\frac{7}{5} \\
& =1.4
\end{aligned}
$$

The object returns after $6+1.4=7.4 \mathrm{~s}$.
(d)

As $6+1.4$ is 7.4 , the object returns after 7.4 s .

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

