$\begin{array}{ll}\text { TG } \\ \text { ADI } & \text { (a) Show that } \\ \int_{-2}^{2} x^{3} d x=0 .\end{array}$
(b) Explain why this is not representative of the area bounded by the graph of $y=x^{3}$, the x-axis, and the lines $x=-2$ and $x=2$.

$$
\text { (a) } \begin{aligned}
\int_{-2}^{2} & x^{3} d x=\left[\frac{x^{4}}{4}\right]_{-2}^{2} \\
& =\frac{2^{4}}{4}-\frac{(-2)^{4}}{4} \\
& =4-4 \\
& =0
\end{aligned}
$$

(b) $y=x^{3}$ is an odd function.

As $\int_{-2}^{0} x^{3} d x=-4$ and $\int_{0}^{2} x^{3} d x=4$, then
$\int_{-2}^{2} x^{3} d x=0$.
The area is $\left|\int_{-2}^{0} x^{3} d x\right|+\int_{0}^{2} x^{3} d x=8$ units 2.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

