TG ADI 6

(a) Show that
$$\int_{-2}^{2} x^3 dx = 0$$
.

(b) Explain why this is not representative of the area bounded by the graph of $y = x^3$, the x-axis, and the lines x = -2 and x = 2.

(a)
$$\int_{-2}^{2} x^{3} dx = \left[\frac{x^{4}}{4} \right]_{-2}^{2}$$
$$= \frac{2^{4}}{4} - \frac{(-2)^{4}}{4}$$
$$= 4 - 4$$
$$= 0$$

(b)
$$y = x^3$$
 is an odd function.

As
$$\int_{-2}^{0} x^3 dx = -4$$
 and $\int_{0}^{2} x^3 dx = 4$, then
$$\int_{-2}^{2} x^3 dx = 0.$$

The area is $|\int_{-2}^{0} x^3 dx| + \int_{0}^{2} x^3 dx = 8 \text{ units}^2$.

Looking for **Mathematics Advanced** Topic Revision? Go to our <u>MathsFit</u> page for downloads @ \$2.95 each

^{*} These solutions have been provided by <u>projectmaths</u> and are not supplied or endorsed by NESA.