TG 4 Determine the possible dimensions for triangle $A B C$ given $A B=5.4 \mathrm{~cm}, \angle B A C=32^{\circ}$ and $B C=3 \mathrm{~cm}$.

Let $\angle A C B=\theta$:

$$
\frac{\sin \theta}{5.4}=\frac{\sin 32^{\circ}}{3}
$$

$$
\sin \theta=\frac{5.4 \sin 32^{\circ}}{3}
$$

$$
=0.953854675 \ldots
$$

$$
\theta=72^{\circ} 32^{\prime}, 107^{\circ} 28^{\prime} \quad \text { (nearest } \mathrm{min} \text {) }
$$

If acute-angled triangle $A B C$, using $\theta=72^{\circ} 32^{\prime}$, let $\angle A B C=\alpha$:

$$
\begin{aligned}
\alpha & =180^{\circ}-\left(32^{\circ}+72^{\circ} 32^{\prime}\right) \\
& =75^{\circ} 28^{\prime}
\end{aligned}
$$

Let $A C=x$:

$$
\begin{aligned}
x^{2} & =3^{2}+5.4^{2}-2(3)(5.4) \cos 75^{\circ} 28^{\prime} \\
& =30.02944009 \ldots \\
x & =5.479912416 \ldots \\
& =5.48(2 \text { dec } \mathrm{pl})
\end{aligned}
$$

$\therefore A C=5.48 \mathrm{~cm}, \angle A C B=72^{\circ} 32^{\prime}, \angle A B C=75^{\circ} 28^{\prime}$
If obtuse-angled triangle $A B C$, using $\theta=107^{\circ} 28^{\prime}$ with similar calculations,
$\therefore A C=3.679 \mathrm{~cm}, \angle A C B=107^{\circ} 28^{\prime}, \angle A B C=40^{\circ} 32^{\prime}$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

