TG 5 A person walks 2000 metres due north along a road from point A to point B.
The point A is due east of a mountain $O M$, where M is the top of the mountain. The point O is directly below point M and is on the same horizontal plane as the road. The height of the mountain above point O is
 h metres.
From point A, the angle of elevation to the top of the mountain is 15°.
From point B, the angle of elevation to the top of the mountain is 13°.
Determine the height of the mountain.

In $\triangle O A M, \angle O M A=75^{\circ}$.
Let $O A=a: \quad \frac{a}{h}=\tan 75^{\circ}$

$$
a=h \tan 75^{\circ}
$$

In $\triangle O A M, \angle O M B=77^{\circ}$.
Let $O B=b: \quad \frac{b}{h}=\tan 77^{\circ}$

$$
b=h \tan 77^{\circ}
$$

In $\triangle A O B$, using Pythagoras:

$$
\begin{aligned}
\left(h \tan 77^{\circ}\right)^{2} & =\left(h \tan 75^{\circ}\right)^{2}+2000^{2} \\
h^{2} \tan ^{2} 77^{\circ} & =h^{2} \tan ^{2} 75^{\circ}+2000^{2} \\
h^{2} \tan ^{2} 77^{\circ}-h^{2} \tan ^{2} 75^{\circ} & =2000^{2} \\
h^{2}\left(\tan ^{2} 77^{\circ}-\tan ^{2} 75^{\circ}\right) & =2000^{2} \\
h^{2} & =\frac{2000^{2}}{\tan ^{2} 77^{\circ}-\tan ^{2} 75^{\circ}} \\
h & =\frac{2000}{\sqrt{\tan ^{2} 77^{\circ}-\tan ^{2} 75^{\circ}}} \\
& =909.7038482 \ldots \\
& =910 \text { (nearest whole) }
\end{aligned}
$$

\therefore the mountain is 910 m high.

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

