TG 6 The Eiffel Tower is located in Paris, a city built on a flat floodplain. Three tourists A, B and C are observing the Eiffel Tower from the ground. A is due north of the tower, C is due east of the tower, and B is on the line-of-sight from A to C and between them. The angles of elevation to the top of the Eiffel Tower from A, B and C are $26^{\circ}, 28^{\circ}$ and 30°, respectively.
Determine the bearing of B from the Eiffel Tower.
In the diagram let the height of tower $T X=h$.
Using $\triangle T A X, \frac{A X}{h}=\tan 64^{\circ}$.
Hence $A X=h \tan 64^{\circ}$
Similarly, $C X=h \tan 60^{\circ}$ and $B X=h \tan 62^{\circ}$
Redraw diagram for horizontal plane.
Let $\angle X C A=\alpha, \angle C B X=\beta$ and $\angle C X B=\theta$.
In $\triangle C X A, \tan \alpha=\frac{h \tan 64^{\circ}}{h \tan 60^{\circ}}$

$$
\alpha=49^{\circ} 49^{\prime}
$$

In $\triangle C X B, \frac{\sin \beta}{h \tan 60^{\circ}}=\frac{\sin 49^{\circ} 49^{\prime}}{h \tan 62^{\circ}}$

$$
\sin \beta=\frac{h \tan 60^{\circ} \sin 49^{\circ} 49^{\prime}}{h \tan 62^{\circ}}
$$

$$
\beta=44^{\circ} 43^{\prime}
$$

Now, $\theta=180^{\circ}-\left(49^{\circ} 49^{\prime}+44^{\circ} 43^{\prime}\right)$

$$
=85^{\circ} \text { (nearest degree) }
$$

$\therefore \angle A X B=5^{\circ}$, hence bearing B from tower is 005°.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

