22 Two right-angled triangles, $A B C$ and $A D C$, are shown.

Calculate the size of angle θ, correct to the nearest minute.

Using triangle $A D C$, and Pythagoras:

$$
\begin{aligned}
A C^{2} & =2.5^{2}+6^{2} \\
& =42.25 \\
A C & =6.5
\end{aligned}
$$

Using triangle $A B C$,

$$
\begin{aligned}
\cos \theta & =\frac{4.9}{6.5} \\
\theta & =41^{\circ} 5^{\prime} \text { (nearest minute) }
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

Marking Feedback:

In better responses, students were able to find the:

- Find $A C$ by using either Pythagoras theorem or the cosine rule
- use right-angled trigonometry $\left(\cos \theta=\frac{A}{H}\right)$ to find θ

Areas for students to improve include:

- remembering to square root their answer when using Pythagoras' theorem or the cosine rule
- practising with two triangles of different orientations and identifying the correct trig ratio
- avoiding rounding too soon when solving problems with several steps
- understanding that if angles are alternate then the appropriate parallel lines would have been marked on the diagram.

