35 A compass radial survey shows the positions of four towns A, B, C and D relative to the point O.

The area of the triangle BOC is $198 \mathrm{~km}^{2}$.
Calculate the bearing of town C from point O, correct to the nearest degree.

$$
A=\frac{1}{2} a b \sin C
$$

Substitute $A=198, a=25, b=16$:

$$
\begin{aligned}
& 198=\frac{1}{2}(25)(16) \sin C \\
& 198=200 \sin C \\
& \sin C=\frac{198}{200} \\
& C=81.89038554 \ldots \\
&=82 \text { (nearest whole) } \\
& \begin{aligned}
\text { Bearing } & =125+82 \\
& =207
\end{aligned}
\end{aligned}
$$

\therefore the bearing is 207°. \checkmark

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

Marking Feedback:

Students should:

- be able to identify the correct formula from the reference sheet for an area
- understand a compass radial survey has its directions given as bearings
- use all the information given in the question.

In better responses, students were able to find the:

- find the angle by rearranging the area of a triangle formula and add to 1250
- round the angle correct to the nearest degree.

Areas for students to improve include:

- understanding that 'Not to Scale' means the angles are not exact in the diagram
- solving the area of a non-right angle triangle to find an unknown value
- interpreting the diagram to find a bearing from calculated values.

