MX 15 Points P and A are on the number plane.
The vector is $\overrightarrow{P A}$ is $\binom{3}{1}$.
Point B is chosen so that the area of $\triangle P A B$ is 10 square units and $|\overrightarrow{P B}|=4 \sqrt{5}$.
Find all possible vectors $\overrightarrow{P B}$.
$|\overrightarrow{P A}|=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
Let $\angle P A B=\theta$.
\therefore Area $\triangle P A B=\frac{1}{2} \times \sqrt{10} \times 4 \sqrt{5} \times \sin \theta=10$
$\therefore 10 \sqrt{2} \sin \theta=10$

$$
\begin{aligned}
\sin \theta & =\frac{1}{\sqrt{2}} \\
\theta & =\frac{\pi}{4}, \frac{3 \pi}{4}
\end{aligned}
$$

Hence, $\cos \theta= \pm \frac{1}{\sqrt{2}}$
Let $\overrightarrow{P B}=\binom{x}{y}$.
Also, as $\overrightarrow{P A} \cdot \overrightarrow{P B}=|\overrightarrow{P A}| \cdot|\overrightarrow{P B}| \cdot \cos \theta$:

$$
\binom{3}{1} \cdot\binom{x}{y}=\sqrt{10} \times 4 \sqrt{5} \times \pm \frac{1}{\sqrt{2}}
$$

$$
3 x+y= \pm 20
$$

Also, $|\overrightarrow{P B}|=\sqrt{x^{2}+y^{2}}=4 \sqrt{5}$

$$
x^{2}+y^{2}=80
$$

Using $3 x+y=20$
$\therefore y=20-3 x$
$x^{2}+y^{2}=80$
\qquad
Subs(1) into (2):

$$
\begin{aligned}
x^{2}+(20-3 x)^{2} & =80 \\
x^{2}+400-120 x+9 x^{2} & =80 \\
10 x^{2}-120 x+320 & =0 \\
x^{2}-12 x+32 & =0 \\
(x-8)(x-4) & =0 \\
x & =8 \text { or } 4
\end{aligned}
$$

Substituting into (1):
$x=8$ and $y=-4$ or $x=4$ and $y=-8$.
Also, using $3 x+y=-20$

$$
\begin{equation*}
\therefore y=-20-3 x \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
x^{2}+y^{2}=80 \tag{4}
\end{equation*}
$$

Subs (3) into (4):

$$
\begin{aligned}
x^{2}+(-20-3 x)^{2} & =80 \\
x^{2}+400+120 x+9 x^{2} & =80 \\
10 x^{2}+120 x+320 & =0 \\
x^{2}+12 x+32 & =0 \\
(x+8)(x+4) & =0 \\
x & =-8 \text { or }-4
\end{aligned}
$$

Substituting into (3):
$x=-8$ and $y=4$ or $x=-4$ and $y=-8$.
Possible vectors $\overrightarrow{P B}$ are $\binom{8}{-4},\binom{4}{-8},\binom{-8}{4},\binom{-4}{-8}$.

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

