Want more revision exercises? Get MathsFit HSC Extension $\mathbf{1}$ for $\$ 2.95 /$ topic - New from projectmaths TG 3

Let A and B be points with position vectors $\underset{\sim}{a}=\binom{3}{1}$ and $\underset{\sim}{b}=\binom{3}{2}$ respectively.
(a) Draw a diagram showing the points O, A and B.
(b) Calculate the angle $A O B$
(i) by finding the tangents of the angles α and β between $\underset{\sim}{a}$ and the unit vector $\underset{\sim}{i}$, and $\underset{\sim}{b}$ and the unit vector $\underset{\sim}{j}$, and using the formula for $\tan (\alpha-\beta)$.
(ii) by using a method based on scalar products.

(b)(i) Let $\angle B O X=\alpha$
$\therefore \tan \alpha=\frac{2}{3}$
Let $\angle A O X=\beta$
$\therefore \tan \beta=\frac{1}{3}$

Want Mathematics Extension 1 Topic Revision?
Go to our MathsFit page for downloads @ \$2.95 each

$$
\begin{aligned}
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
&=\frac{\frac{2}{3}-\frac{1}{3}}{1+\frac{2}{3} \times \frac{1}{3}} \\
&=\frac{3}{11} \\
& \therefore \angle A O B=\tan ^{-1} \frac{3}{11}=15^{\circ} 15^{\prime}(\text { nearest min) }
\end{aligned}
$$

$$
\text { (ii) }|\underset{\sim}{a}|=\sqrt{3^{2}+1^{2}}
$$

$$
=\sqrt{10}
$$

$$
|\underset{\sim}{b}|=\sqrt{3^{2}+2^{2}}
$$

$$
=\sqrt{13}
$$

$$
\begin{aligned}
\cos \angle A O B & =\frac{\underset{\sim}{a \cdot b}}{\left.|\underset{\sim}{a}|\right|_{\sim} ^{b} \mid} \\
& =\frac{3 \times 3+1 \times 2}{\sqrt{10} \times \sqrt{13}} \\
& =\frac{11}{\sqrt{130}} \\
\angle A O B & =15^{\circ} 15^{\prime} \text { (nearest min) }
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

