TG 4 Find the angle between the line joining (1,2) and ($3,-5$) and the line joining $(2,-3)$ to $(1,4)$.
Consider $\underset{\sim}{u}=$ vector between $(1,2)$ and $(3,-5)$ and $\underset{\sim}{v}=$ vector between $(2,-3)$ to $(1,4)$.

$$
\begin{aligned}
\therefore \underset{\sim}{u} & =(3-1) \underset{\sim}{i}+(-5-2) \underset{\sim}{j} \\
& =2 \underset{\sim}{i}-7 \underset{\sim}{j}
\end{aligned}
$$

Also, $\underset{\sim}{v}=(1-2) \underset{\sim}{i}+(4+3) \underset{\sim}{j}$

$$
=-\underset{\sim}{i}+7 \underset{\sim}{j}
$$

$$
\begin{aligned}
\cos \theta & =\left.\underset{\sim}{\left.\underset{\sim}{u} \underset{\sim}{u}\right|_{\sim} ^{v}}\right|_{\sim} ^{v} \mid \\
& =\frac{2 \times-1+(-7) \times 7}{\sqrt{2^{2}+(-7)^{2}} \sqrt{(-1)^{2}+7^{2}}} \\
& =\frac{-51}{\sqrt{53} \sqrt{50}} \\
& =-0.9907 \ldots
\end{aligned}
$$

For acute angle,
$\cos \theta=0.9907 \ldots$
$\therefore \theta=8^{\circ}$ (nearest degree).

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

