TG 7
Let $O A B C$ be a kite, with $O B$ as its line of symmetry. Let $\overrightarrow{O A}=\underset{\sim}{a}, \overrightarrow{O B}=\underset{\sim}{b}$ and $\overrightarrow{O C}=\underset{\sim}{c}$.
(a) Write the vectors $\overrightarrow{A B}$ and $\overrightarrow{C B}$ in terms of $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$.
(b) Using the fact that the lengths of $A B$ and $C B$ are equal, write an equation involving scalar products.
(c) Use this equation to prove that the diagonals of a kite are perpendicular.
(a)

$\overrightarrow{A B}=\underset{\sim}{b}-\underset{\sim}{a}$
$\overrightarrow{C B}=\underset{\sim}{b}-\underset{\sim}{c}$
(b) $|\underset{\sim}{b}-\underset{\sim}{a}|=|\underset{\sim}{b}-\underset{\sim}{c}|$ and $|\underset{\sim}{a}|=|\underset{\sim}{c}|$

Now, $\overrightarrow{A C}=\underset{\sim}{c}-\underset{\sim}{a}$

$$
\overrightarrow{A C} \cdot \overrightarrow{O B}=(\underset{\sim}{c}-\underset{\sim}{a}) \cdot \underset{\sim}{b}
$$

(c) $\overrightarrow{A C} \cdot \overrightarrow{O B}=\underset{\sim}{c} \cdot \underset{\sim}{b}-\underset{\sim}{a} \cdot \underset{\sim}{b}$

$$
\begin{aligned}
& =|\underset{\sim}{c}|| ||\underset{\sim}{b}| \cos \angle C O B-|\underset{\sim}{\mid}||\underset{\sim}{\mid}| \cos \angle A O B \\
& =|\underset{\sim}{a}|| | \underset{\sim}{b}|\cos \angle C O B-|\underset{\sim}{\mid}|| \underset{\sim}{b} \mid \cos \angle A O B
\end{aligned}
$$

As $O B$ is axis of symmetry, then $\angle C O B=\angle A O B$.
$\therefore \overrightarrow{A C} \cdot \overrightarrow{O B}=0$
Hence, $\overrightarrow{A C} \perp \overrightarrow{O B}$.
The diagonals are perpendicular.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

