TG 1 State whether the following binomial distributions can or cannot be reasonably approximated by a normal distribution.
Write a brief calculation to justify your conclusion in each case:
(a) $\operatorname{Bin}(50,0.2)$
(b) $\operatorname{Bin}(60,0.1)$
(c) $\operatorname{Bin}(70,0.01)$
(d) $\operatorname{Bin}(30,0.7)$
(e) $\operatorname{Bin}(40,0.9)$
(a) $n=50$ and $p=0.2$

$$
n p=50 \times 0.2=10 \geq 10
$$

$$
n q=50 \times(1-0.2)=40>10
$$

As $n p \geq 10$ and $n q>10$, the binomial distribution can be approximated by a normal distribution.
(b) $n=60$ and $p=0.1$ $n p=60 \times 0.1=6<10$
As $n p<10$, the binomial distribution cannot be approximated by a normal distribution.
(c) $n=70$ and $p=0.01$
$n p=70 \times 0.01=0.7<10$
As $n p<10$, the binomial distribution cannot be approximated by a normal distribution.
(d) $n=30$ and $p=0.7$

$$
\begin{aligned}
& n p=30 \times 0.7=21 \geq 10 \\
& n q=30 \times(1-0.7)=9<10
\end{aligned}
$$

As $n p>10$ but $n q<10$, the binomial distribution cannot be approximated by a normal distribution.
(e) $n=40$ and $p=0.9$
$n p=40 \times 0.9=36>10$
$n q=40 \times(1-0.9)=4<10$
As $n p>10$ but $n q<10$, the binomial distribution cannot be approximated by a normal distribution.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

