TG 3 A fair coin is tossed 18 times. Use the binomial distribution to find the probability of obtaining 14 Heads. Then use the normal distribution to find the probability of obtaining 14 Heads, and to find the probability of obtaining 14 or more Heads.

Show that the approximation is valid. Projectmaths has provided this probability table extract:

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952

Using Binomial distribution: $X \sim \operatorname{Bin}(18,0.5)$: \quad For $P(Y=14)$, consider $P(13.5 \leq Z \leq 14.5)$:

$$
\begin{aligned}
\mathrm{P}(X=14) & ={ }^{18} C_{14}(0.5)^{14}(0.5)^{4} \\
& =0.011672973 \ldots \\
& =0.0117(4 \mathrm{dec} \mathrm{pl})
\end{aligned}
$$

Using normal distribution: $Y \sim N(18,0.5)$:

$$
\begin{gathered}
n=18 \text { and } p=0.5 \\
n p=18 \times 0.5 \\
\quad=9
\end{gathered}
$$

Also, $n q=9$.
So, $n p<10$ and $n q<10$.

$$
\begin{aligned}
\sigma & =\sqrt{n p(1-p)} \\
& =\sqrt{9(1-0.5)} \\
& =2.1213(4 \operatorname{dec} \mathrm{pl})
\end{aligned}
$$

$$
\text { For 13.5: } \quad \begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
& =\frac{13.5-9}{2.1213} \\
& =2.12(2 \mathrm{dec} \mathrm{pl})
\end{aligned}
$$

From the table, $z=2.12$ gives 0.9830 .
For 14.5: $\quad z=\frac{14.5-9}{2.1213}$

$$
=2.59(2 \mathrm{dec} \mathrm{pl})
$$

From the table, $z=2.59$ gives 0.9952 .
$P(13.5 \leq Z \leq 14.5)=0.9952-0.9830$

$$
=0.0122
$$

For $P(Y \geq 14)$: For $14.5: \quad z=\frac{14-9}{2.1213}$

$$
=2.36(2 \mathrm{dec} \mathrm{pl})
$$

From the table, $z=2.36$ gives 0.9909 .
For $P(Y \geq 14)=1-0.9909$

$$
=0.0091
$$

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

