TG 7 Find the probability of obtaining 4, 5, 6 or 7 Heads when a fair coin is tossed 12 times
(a) using the binomial theorem.
(b) using a normal approximation to the binomial distribution.

Projectmaths has provided this probability table extract:

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
\ldots										
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319

(a) Using Binomial distribution:

$$
\begin{aligned}
& \mathrm{P}(X=4 \text { or } X=5 \text { or } X=6 \text { or } X=7) \\
& ={ }^{12} C_{4}(0.5)^{4}(0.5)^{8}+{ }^{12} C_{5}(0.5)^{5}(0.5)^{7} \\
& \quad+{ }^{12} C_{6}(0.5)^{6}(0.5)^{6}+{ }^{12} C_{7}(0.5)^{7}(0.5)^{5} \\
& =0.7332(4 \text { dec pl) }
\end{aligned}
$$

(b) Using Normal distribution:

$$
\begin{aligned}
& n=12 \\
& P(\text { head })=p=0.5 \\
& n p
\end{aligned}=12 \times 0.5
$$

As $n p<10$, use continuity correction:

$$
\begin{aligned}
& \mathrm{P}(3.5 \leq X \leq 7.5) \\
& \text { Consider } X=3.5: \quad z=\frac{3.5-6}{1.7321} \\
& \\
&
\end{aligned}
$$

From the table, $z=1.44$ gives 0.9251 ,
so -1.44 gives $1-0.9251=0.0749$.

$$
\text { Consider } \begin{aligned}
X=7.5: \quad z & =\frac{7.5-6}{1.7321} \\
& =0.87(2 \mathrm{dec} \mathrm{pl})
\end{aligned}
$$

From the table, $z=0.87$ gives 0.8078 .
Hence, $\mathrm{P}(4,5,6$ or 7$)=0.8078-0.0749$

$$
=0.7329
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

