3 A spherical bubble is expanding so that its volume increases at the constant rate of $70 \mathrm{~mm}^{3}$ per second.
What is the rate of increase of its surface area when the radius is 10 mm ?

$$
\begin{aligned}
& \text { Volume of a sphere: } V \\
& \qquad \begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d r} & =4 \pi r^{2} \\
\frac{d V}{d r}(10) & =4 \pi(10)^{2} \\
& =400 \pi
\end{aligned}
\end{aligned}
$$

$$
\text { Also, } \frac{d V}{d t}=70
$$

$$
\text { Using } \frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}
$$

$$
70=400 \pi \times \frac{d r}{d t}
$$

$$
\frac{d r}{d t}=\frac{70}{400 \pi}
$$

$$
=\frac{7}{40 \pi}
$$

Surface area of a sphere: $A=4 \pi r^{2}$

$$
\begin{aligned}
A & =4 \pi r^{2} \\
\frac{d A}{d r} & =8 \pi r \\
\frac{d A}{d r}(10) & =8 \pi(10) \\
& =80 \pi
\end{aligned}
$$

Also, $\frac{d r}{d t}=\frac{7}{40 \pi}$
Using $\frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t}$

$$
\begin{aligned}
& \frac{d A}{d t}=80 \pi \times \frac{7}{40 \pi} \\
& \frac{d A}{d t}=14
\end{aligned}
$$

\therefore the surface area increases at $14 \mathrm{~mm}^{2} \mathrm{~s}^{-1}$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

