TG

11
X

5 The diagram shows two identical circular cones with a common vertical axis. Each cone has height $h \mathrm{~cm}$ and
7a semi-vertical angle 45°. The lower cone is completely filled with water. The upper cone is lowered vertically into the water as shown in the diagram. The rate at which it its lowered is given by $\frac{d \ell}{d t}=10$, where $\ell \mathrm{cm}$ is the distance the upper cone has descended into the water after t seconds. As the upper cone is lowered, water spills from the lower cone. The volume of water remaining in the lower cone at time t is $V \mathrm{~cm}^{3}$.

Not to scale
(i) Show that $V=\frac{\pi}{3}\left(h^{3}-\ell^{3}\right)$.
(ii) Find the rate at which V is changing with respect to time when $\ell=2$.
(iii) Find the rate at which V is changing with respect to time when the lower cone has lost $\frac{1}{8}$ of its water. Give your answer in terms of h.
(i) As semi-vertical angle is 45°, then
radius $=$ height (isosceles triangle)
\therefore vol. of lower cone $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \pi h^{3}
$$

\therefore vol. of upper cone $=\frac{1}{3} \pi \ell^{3}$

$$
\begin{aligned}
\therefore V & =\frac{1}{3} \pi h^{3}-\frac{1}{3} \pi \ell^{3} \\
& =\frac{\pi}{3}\left(h^{3}-\ell^{3}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =\frac{\pi}{3}\left(h^{3}-\ell^{3}\right) \\
\frac{d V}{d \ell} & =\frac{\pi}{3}\left(-3 \ell^{2}\right) \\
& =-\pi \ell^{2}
\end{aligned}
$$

When $\ell=2, \frac{d V}{d \ell}=-4 \pi$
Also, $\frac{d \ell}{d t}=10$,

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d \ell} \times \frac{d \ell}{d t} \\
& =-4 \pi \times 10 \\
& =-40 \pi \quad \therefore-40 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

(iii) $\frac{1}{3} \pi \ell^{3}=\frac{1}{8} \times \frac{1}{3} \pi h^{3}$

$$
\ell^{3}=\frac{1}{8} h^{3}
$$

$$
\ell=\frac{h}{2}
$$

$$
\frac{d V}{d \ell}=-\pi \ell^{2}
$$

$$
\text { When } \ell=\frac{h}{2}, \frac{d V}{d \ell}=-\frac{\pi h^{2}}{4} . \text { Also, } \frac{d \ell}{d t}=10
$$

$$
\frac{d V}{d t}=\frac{d V}{d \ell} \times \frac{d \ell}{d t}
$$

$$
=-\frac{\pi h^{2}}{4} \times 10
$$

$$
=-\frac{5 \pi h^{2}}{2} \quad \therefore-\frac{5 \pi h^{2}}{2} \mathrm{~cm}^{3} / \mathrm{sec}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

