SAMPLE ONLY
 MATHEMATICS ADVANCED HSC Exam* Questions by Topic 2023-2019

Year 11 Course

Functions

F1.1 Algebraic techniques
F1.2 Introduction to functions
F1.3 Linear, quadratic \& cubic functions
F1.4 Further functions \& relations
Trigonometric Functions
T1.1 Trigonometry
T1.2 Radians
T2 Trigonometric functions \& identities

Calculus

C1.1 Gradients of tangents
C1.2 Difference quotients
C1.3 The derivative function \& its graph
C1.4 Calculating with derivatives
Exponential \& Logarithmic Functions
E1.1 Introducing logarithms
E1.2 Logarithmic laws \& applications
E1.3 Exponential function \& natural logs
E1.4 Graphs \& apps of $\exp \& \log$ functions
Statistical Analysis
S1.1 Probability \& Venn diagrams
S1.2 Discrete probability distributions

Year 12 Course

Functions

F2 Graphing techniques
Trigonometric Function:
T3 Trig functions and graphs

Calculus

C2.1 Diff of trig, $\exp \& \log$ fns
C2.2 Rules of differentiation
C3.1 The first \& second derivs
C3.2 Applications of the deriv
C4.1 The anti-derivative
C4.2 Areas \& the definite integral
Financial Mathematics
M1.1 Modelling investments \& loans
M1.2 Arithmetic sequences \& series
M1.3 Geometric sequences \& series
M1.4 Financial apps of sequences \& series
Statistical Analysis
S2.1 Data and summary statistics
S2.2 Bivariate data analysis
S3.1 Continuous random variables
S3.2 The normal distribution

Mathematics Advanced, Ext 1, Ext 2 Reference Sheet (2023 HSC)

Questions by Topic from ...

- 2023-2020 Mathematics Advanced HSC and 2019-2019 Mathematics HSC
- NESA Sample Examination Paper [MA SP] and other examination questions [MA SQ]
- Selected NESA Topic Guidance questions [TG]
- Selected NESA Maths Stand 2 Sample exam questions [MS SQ] (common topics)
- Selected Qs from 2023-2019 Maths Extension 1 and 2023-2019 Maths Stand 2/General HSCs
- NESA's Mathematics Standard 2 Sample exam questions [MS SQ]

Year 11: Trigonometric Functions T1.1 Trigonometry

Syllabus: updated November 2019. Latest version @
https://educationstandards.nsw.edu.au/wps/portal/nesa/11-12/stage-6-learning-areas/stage-6-mathematics/mathematics-advanced-2017

Students:

- use the sine, cosine and tangent ratios to solve problems involving right-angled triangles where angles are measured in degrees, or degrees and minutes if
- establish and use the sine rule, cosine rule and the area of a triangle formula for solving problems where angles are measured in degrees, or degrees and minutes AAM ©I
- find angles and sides involving the ambiguous case of the sine rule
- use technology and/or geometric construction to investigate the ambiguous case of the sine rule when finding an angle, and the condition for it to arise
- solve problems involving the use of trigonometry in two and three dimensions AAM Q
- interpret information about a two or three-dimensional context given in diagrammatic or written form and construct diagrams where required
- solve practical problems involving Pythagoras' theorem and the trigonometry of triangles, which may involve the ambiguous case, including finding and using angles of elevation and depression and the use of true bearings and compass bearings in navigation AAM © \% ${ }^{\text {\% }}$

2316 The diagram shows a shape $A P Q B C D$. The shape consists of a rectangle $A B C D$ with an arc $P Q$ on side $A B$ and with side lengths $B C=3.6 \mathrm{~m}$ and $C D=8.0 \mathrm{~m}$.
The arc PQ is an arc of a circle with centre O and radius 2.1 m and $\angle \mathrm{POQ}=110^{\circ}$.
What is the perimeter of the shape APQBCD?
Give your answer correct to one decimal place.

COMMON QUESTION: NESA 2023 Mathematics Standard 2 and Advanced HSC Examinations

23
MA

22 In the rectangular prism shown, $A D=7 \mathrm{~cm}, A E=8 \mathrm{~cm}, E F=6 \mathrm{~cm}$. Point M is the midpoint of $C D$.

Find $\angle A E M$, to the nearest degree.

NESA 2023 Mathematics Advanced HSC Examination

$\begin{array}{lll}21 & 39 & \text { The diagram shows a compass radial }\end{array}$ MS survey of the field $A B C D$.
(a) Triangle $C O B$ has an area of $466 \mathrm{~m}^{2}$.

Find the size of acute angle $C O B$, correct to the nearest degree.
(b) A farmer wants to put a fence around the triangle DOC.
Find the length of fencing required.
Give your answer in metres correct to one decimal place.

Solution

2

3

NESA 2021 Mathematics Standard 2 HSC Examination
$2015 \mathrm{Mr} \mathrm{Ali}, \mathrm{Ms}$ Brown and a group of students were camping

Mr Ali walked with some of the students on a bearing of 035° for 7 km to location A.
Ms Brown, with the rest of the students, walked on a bearing of 100° for 9 km to location B.
(a) Show that the angle $A P B$ is 65°.
(b) Find the distance $A B$.
(c) Find the bearing of Ms Brown's group from Mr Ali's group.
 Give your answer correct to the nearest degree.

COMMON QUESTION: NESA 2020 Mathematics Standard 2 and Advanced HSC Examinations
22 The diagram shows a regular decagon (ten-sided shape with all sides equal and all interior angles equal).
The decagon has centre O.
The perimeter of the shape is 80 cm .
By considering triangle $O A B$, calculate the area of the tensided shape.
Give your answer in square centimetres, correct to one decimal place.

COMMON QUESTION: NESA 2020 Mathematics Standard 2 and Advanced HSC Examinations

MA 21 The diagram shows the distances of four towns
SP $\quad \begin{aligned} & \text { Band } \\ & 3-5\end{aligned} \quad A, B, C$ and D from point O.
The true bearings of towns A, B and D from point O are also shown.
The area of the acute-angled triangle $B O C$ is $198 \mathrm{~cm}^{2}$.
Calculate the true bearing of town C from point O, correct to the nearest degree.

3 Solution
, correct to the nearest degree.

NOT TO
SCALE

NESA Mathematics Advanced Sample Examination Paper (2020)
 way. Leaving Town Y, the pilot incorrectly sets the bearing of Town Z to $\mathrm{S} 50^{\circ} \mathrm{E}$. The pilot flies for 1650 km before realising the mistake, then changes course and flies directly to Town X without going to Town Z.
Which is closer to Town X : Town Z or the point where the pilot changes course? Justify your answer.

NESA Mathematics Advanced Sample examination materials (2019)
TG 1 In the diagram, $O A B$ is a sector of the circle with centre O and radius 6 cm , where $\angle A O B=30^{\circ}$. Determine the exact value of the area of the triangle $O A B$.

NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions

NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions NESA 2014 Mathematics HSC Examination
TG 4 Determine the possible dimensions for triangle $A B C$ given $A B=5.4 \mathrm{~cm}, \angle B A C=32^{\circ}$ and $B C=3 \mathrm{~cm}$.

NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions
TG 5 A person walks 2000 metres due north along a road from point A to point B. The point A is due east of a mountain $O M$, where M is the top of the mountain. The point O is directly below point M and is on the same horizontal plane as the road. The height of the mountain above point O is h metres.
From point A, the angle of elevation to the top of the mountain is 15°. From point B, the angle of elevation to the top of the mountain is 13°.
Determine the height of the mountain
NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions
TG 6 The Eiffel Tower is located in Paris, a city built on a flat floodplain. Three tourists A, B and C are observing the Eiffel Tower from the ground. A is due north of the tower, C is due east of the tower, and B is on the line-of-sight from A to C and between them. The angles of elevation to the top of the Eiffel Tower from A, B and C are $26^{\circ}, 28^{\circ}$ and 30°, respectively. Determine the bearing of B from the Eiffel Tower.

NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions
MS ME Which of the following expresses $520^{\circ} \mathrm{W}$ as a true bearing?
SQ 4 A. 020°
B. 070°
C. 160°
D. 200°

1 Solution
NESA Mathematics Standard 2 Sample examination materials
MS ME Abbey walks 2 km due west from home to a coffee shop.
SQ 7 She then walks on a bearing of 148° to school, which is due south of her home. How far south, to the nearest 0.1 km , is Abbey from home?
A. 1.1 km
B. 1.2 km
C. 3.2 km
D. 3.8 km

NESA Mathematics Standard 2 Sample examination materials

MS ME The angle of depression from a window to
SQ 9 a car on the ground is 40°.
The car is 50 metres from the base of the building.
How high above the ground is the window, correct to the nearest metre?
A. 32 m
B. 38 m
C. 42 m
D. 48 m

NESA Mathematics Standard 2 Sample examination materials
MS ME The diagram shows the radial survey of a

Solution
SQ 24 piece of land.
(a) B is south west of O.

What is the true bearing of C from O ?
(b) What is the area of angle of $\triangle A O B$, to the nearest m^{2} ?

NOT TO SCALE

2
3

NESA Mathematics Standard 2 Sample examination materials
MS ME Lisa owns a piece of land as shown in the diagram.
SQ 25 The length of $B C$ is 230 metres.
The size of angle BCA is 87° and of angle BAC is 47°.
Lisa wants to build a fence along AC.
Fencing can be purchased in metre lengths at a cost of $\$ 65$ per metre.
Calculate the cost of the fencing required.

NESA Mathematics Standard 2 Sample examination materials
MS ME Find the area of triangle PQR, correct to the
SQ 26 nearest square metre.

NOT TO SCALE
NESA Mathematics Standard 2 Sample examination materials
MS ME The diagram shows triangle $X Y Z$.
SQ 27 The area of the triangle $43 \mathrm{~m}^{2}$ and $\angle Y X Z$ is acute. What is the size of $\angle Y X Z$, to the nearest degree?

NOT TO SCALE

NESA Mathematics Standard 2 Sample examination materials

MS ME The scale diagram shows the SQ 28 aerial view of a block of land bounded on one side by a road. The length of the block, $A B$, is known to be 45 metres.
Calculate the approximate area of the block of land, using three applications of the trapezoidal rule.
[A note to students from projectmaths: Use a ruler to measure $A B$ as 4.5 cm]

NESA Mathematics Standard 2 Sample examination materials
1911 Using the sine rule, find the value of x correct to one
M a decimal place.

2 Solution

NESA 2019 Mathematics HSC Examination
1914 The regular hexagon $A B C D E F$ has sides of length 1. M c The diagonal $A E$ and the side $C D$ are produced to meet at the point X.
Copy or trace the diagram into your writing booklet. Find the exact length of the line segment $E X$, justifying your answer.

3 Solution

NESA 2019 Mathematics HSC Examination
194 Which compass bearing is the same as a true bearing of 110° ?
1 Solution
MS
2
19
MS
2
A. $S 20^{\circ} \mathrm{E}$
B. $S 20^{\circ} \mathrm{W}$
C. $S 70^{\circ} \mathrm{E}$
D. $570^{\circ} \mathrm{W}$

NESA 2019 Mathematics Standard 2 HSC Examination
12 An owl is 7 metres above ground level, in a tree. The owl sees a mouse on the
1 Solution ground at an angle of depression of 32°. How far must the owl fly in a straight line to catch the mouse, assuming the mouse does not move?
A. 3.7 m
B. 5.9 m
C. 8.3 m
D. 13.2 m

NESA 2019 Mathematics Standard 2 HSC Examination
1922 Two right-angled triangles, $A B C$ and $A D C$, are shown.

Calculate the size of angle θ, correct to the nearest minute.

NESA 2019 Mathematics Standard 2 HSC Examination

1935 A compass radial survey shows the positions of MS four towns A, B, C and D relative to the point O. The area of the triangle $B O C$ is $198 \mathrm{~km}^{2}$.

Calculate the bearing of town C from point O, correct to the nearest degree.

Year 11: Trigonometric Functions T1.2 Radians

Syllabus: updated November 2019. Latest version @

https://educationstandards.nsw.edu.au/wps/portal/nesa/11-12/stage-6-learning-areas/stage-6-mathematics/mathematics-advanced-2017

Students:

- understand the unit circle definition of $\sin \theta, \cos \theta$ and $\tan \theta$ and periodicity using degrees (ACMMMO29)
- sketch the trigonometric functions in degrees for $0^{\circ} \leq x \leq 360^{\circ}$
- define and use radian measure and understand its relationship with degree measure (ACMMM032)
- convert between the two measures, using the fact that $360^{\circ}=2 \pi$ radians
- recognise and use the exact values of $\sin \theta, \cos \theta$ and $\tan \theta$ in both degrees and radians for integer multiples of $\frac{\pi}{6}$ and $\frac{\pi}{4}$ (ACMMM035)
- understand the unit circle definition of $\sin \theta, \cos \theta$ and $\tan \theta$ and periodicity using radians (ACMMM034)
- solve problems involving trigonometric ratios of angles of any magnitude in both degrees and radians
- recognise the graphs of $y=\sin x, y=\cos x$ and $y=\tan x$ and sketch on extended domains in degrees and radians (ACMMM036)
- derive the formula for arc length, $l=r \theta$ and for the area of a sector of a circle, $A=\frac{1}{2} r^{2} \theta$ e
- solve problems involving sector areas, arc lengths and combinations of either areas or lengths

TG 1 Solve, if $0 \leq x \leq 2 \pi$,
(a) $\sqrt{3} \sin x=\cos x$
(b) $2 \cos 2 x=0$

NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions
TG 2 Find the exact values of:
(a) $\cos \frac{4}{3} \pi$
(b) $\sin \frac{5}{6} \pi$
(c) $\tan \left(-45^{\circ}\right)$

NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions

$\begin{aligned} & \text { TG } \\ & \mathbf{9 5} \\ & \text { M } \end{aligned}$	$\begin{gathered} 3 \\ 1 \mathrm{c} \end{gathered}$	Convert $\frac{3 \pi}{5}$ radians to degrees. NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions NESA 1995 Mathematics HSC Examination	Solution
TG	4	Find the exact value of $\sin \left(\frac{\pi}{4}\right)+\sin \left(\frac{2 \pi}{3}\right)$. NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions	$\frac{\text { Solution }}{\infty}$
TG	5	Solve $2 \sin x=1$ for $-2 \pi \leq x \leq 2 \pi$. NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions	Solution
TG	6	Find the perimeter and the area of the segment cut off by a chord $P Q$ of length 8 cm in a circle centre O and radius 6 cm . Give your answers correct to 3 significant figures. NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions	$\frac{\text { Solution }}{}$

TG 7 A chord of a circle which subtends an angle of θ at the centre of the circle cuts off a segment equal in area to $\frac{1}{3}$ of the area of the whole circle.
(a) Show that $\theta-\sin \theta=\frac{2 \pi}{3}$.
(b) Verify that $\theta=2.61$ radians, correct to 2 decimal places.

NESA Mathematics Advanced Year 11 Topic Guide: Trigonometric functions
1913 The diagram shows a circle with centre O and M b radius 20 cm .

The points A and B lie on the circle such that $\angle A O B=70^{\circ}$.
Find the perimeter of the shaded segment, giving your answer correct to one decimal place

NESA 2019 Mathematics HSC Examination

Year 11：Statistical Analysis S1．1 Probability and Venn Diagrams

Syllabus：updated November 2019．Latest version＠

https：／／educationstandards．nsw．edu．au／wps／portal／nesa／11－12／stage－6－learning－areas／stage－6－mathematics／mathematics－advanced－2017

Students：

－understand and use the concepts and language associated with theoretical probability，relative frequency and the probability scale 0 ，
－solve problems involving simulations or trials of experiments in a variety of contexts AAM Q
－identify factors that could complicate the simulation of real－world events（ACMEM153）
－use relative frequencies obtained from data as point estimates of probabilities（ACMMM055）
－use arrays and tree diagrams to determine the outcomes and probabilities for multi－stage experiments（ACMEM156）AAM U
－use Venn diagrams，set language and notation for events，including \bar{A}（or A^{\prime} or A^{c} ）for the complement of an event $A, A \cap B$ for＇A and B＇，the intersection of events A and B ，and $A \cup B$ for ＇A or B＇，the union of events A and B ，and recognise mutually exclusive events（ACMMM050）
AAM
－use everyday occurrences to illustrate set descriptions and representations of events and set operations（ACMMM051）
－establish and use the rules：$P(\bar{A})=1-P(A)$ and $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ （ACMMM054）AAM II
－understand the notion of conditional probability and recognise and use language that indicates conditionality（ACMMM056）
－use the notation $P(A \mid B)$ and the formula $P(A \mid B)=\frac{P(A \cap B)}{P(B)}, P(B) \neq 0$ for conditional probability （ACMMM057）AAM
－understand the notion of independence of an event A from an event B ，as defined by $P(A \mid B)=P(A)(A C M M M 058)$
－use the multiplication law $P(A \cap B)=P(A) P(B)$ for independent events A and B and recognise the symmetry of independence in simple probability situations（ACMMM059）

232 A game involves throwing a die and spinning MA a spinner．

The sum of the two numbers obtained is the score．The table of scores below is partially completed．

What is the probability of getting a score of 7 or more？
A．$\frac{1}{6}$
B．$\frac{1}{4}$
C．$\frac{5}{18}$
D．$\frac{5}{12}$

		SPINNER			
	1	2	3	4	
ω	1	2	3	4	
	2	3	4	5	
	3		5	6	
	4			7	
	5				
	6				

2331 Four Year 12 students want to organise a graduation party. All four students have the MA same probability, $P(F)$, of being available next Friday. All four students have the same probability, $P(S)$, of being available next Saturday.
It is given that $P(F)=\frac{3}{10}, P(S \mid F)=\frac{1}{3}$, and $P(F \mid S)=\frac{1}{8}$.
Kim is one of the four students.
(a) Is Kim's availability next Friday independent from his availability next Saturday? Justify your answer.
(b) Show that the probability that Kim is available next Saturday is $\frac{4}{5}$.

(c) What is the probability that at least one of the four students is NOT available next Saturday?

NESA 2023 Mathematics Advanced HSC Examination
229 Liam is playing two games. He is equally likely to win each game.
MA The probability that Liam will win at least one of the games is 80%.
Which of the following is closest to the probability that Liam will win both games?
A. 31%
B. 40%
C. 55%
D. 64%

NESA 2022 Mathematics Advanced HSC Examination
2215 In a bag there are 3 six-sided dice.
MA Two of the dice have faces marked 1, 2, 3, 4, 5, 6 .
The other is a special die with faces marked $1,2,3,5,5,5$.
One die is randomly selected and tossed.
(a) What is the probability that the die shows a 5 ?
(b) Given that the die shows a 5 , what is the probability that it is the special die?

NESA 2022 Mathematics Advanced HSC Examination

$\mathbf{2 1} \mathbf{6}$	There are 8 chocolates in a box. Three have peppermint centres (P) and five have caramel centres (C). Kim randomly chooses a chocolate from the box and eats it. Sam then randomly chooses and eats one of the remaining chocolates. A partially completed probability tree is shown.

What is the probability that Kim and Sam choose chocolates with different centres?
A. $\frac{15}{64}$
B. $\frac{15}{56}$
C. $\frac{15}{32}$
D. $\frac{15}{28}$

1
1
Solution

2014 History and Geography are two subjects students may decide to study.
Solution
MA For a group of 40 students, the following is known.

- 7 students study neither History nor Geography
- 20 students study History
- 18 students study Geography
(a) A student is chosen at random. By using a Venn diagram, or otherwise, find the probability that the student studies both History and Geography.
(b) A student is chosen at random. Given that the student studies Geography, what is the probability that the student does NOT study History?
(c) Two different students are chosen at random, one after the other. What is the probability that the first student studies History and the second student does NOT study History?

2

1
2

NESA 2020 Mathematics Advanced HSC Examination

$\mathbf{2 0}$	$\mathbf{1 5}$	The top of a rectangular table is divided into 8 equal
MS		sections as shown.
$\mathbf{2}$		A standard die with faces labelled 1 to 6 is rolled onto the
	table.	

1	2	3	4
5	6	7	8

1

The die is equally likely to land in any of the 8 sections of the table. If the die does not land entirely in one section of the table, it is rolled again.
A score is calculated by multiplying the value shown on the top face of the die by the number shown in the section of the table where the die lands.

What is the probability of getting a score of 6 ?
A $\frac{1}{48}$
B $\frac{1}{12}$
C $\frac{1}{8}$
D $\frac{1}{6}$

NESA 2020 Mathematics Standard 2 HSC Examination

Repetition is allowed and the PIN can start with any of the 10 digits.
The credit card is lost and the finder tries to guess the PIN by entering four digits.
(a) What is the probability that the four digits entered are the correct PIN?

1
1

(b) What is the probability that the finder will guess at least one digit in its correct order?

NESA Mathematics Advanced Sample Examination Paper (2020)

MA	5
SQ	Band
2019	$3-4$

In a mixed language class, students study French, Mandarin and Indonesian. The number of students who study each language are shown in the Venn diagram.
A student who studies Indonesian is selected at random.
What is the probability that he/she also studies French?
A. $\frac{1}{6}$
B. $\frac{3}{10}$
C. $\frac{3}{5}$
D. $\frac{7}{10}$

196 A game is played by tossing an ordinary 6-sided die and an ordinary coin at the same M time. The game is won if the uppermost face of the die shows an even number or the uppermost face of the coin shows a tail (or both). What is the probability of winning this game?
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. 1

NESA 2019 Mathematics HSC Examination
1911 A bag contains 5 green beads and 7 purple beads. Two beads are selected at
2 Solution
M f random, without replacement. What is the probability that the two beads are the same colour?

NESA 2019 Mathematics HSC Examination
1915 The probability that a person chosen at random has red hair is 0.02 .
Solution
M d (i) Two people are chosen at random.
2
What is the probability that at least ONE has red hair?
(ii) What is the smallest number of people that can be chosen at random so
 that the probability that at least ONE has red hair is greater than 0.4

NESA 2019 Mathematics HSC Examination
1920 A roulette wheel has the numbers $0,1,2, \ldots, 36$ where each of the 37 numbers is equally likely to be spun.

If the wheel is spun 18500 times, calculate the expected frequency of spinning the number 8 .

NESA 2019 Mathematics Standard 2 HSC Examination

19	25	A bowl of fruit contains 17 apples of which 9 are red and 8 are green.	3	Solution
$\underset{2}{\mathbf{M S}}$		Dennis takes one apple at random and eats it. Margaret also takes an apple at random and eats it.		(0
		By drawing a probability tree diagram, or otherwise, find the probability that		
		Dennis and Margaret eat apples of the same colour.		

NESA 2019 Mathematics Standard 2 HSC Examination

Year 12: Calculus

C3.2 Applications of the Derivative

Syllabus: updated November 2019. Latest version @

https://educationstandards.nsw.edu.au/wps/portal/nesa/11-12/stage-6-learning-areas/stage-6-mathematics/mathematics-advanced-2017

Students:

- use any of the functions covered in the scope of this syllabus and their derivatives to solve practical and abstract problems AAM
- use calculus to determine and verify the nature of stationary points, find local and global maxima and minima and points of inflection (horizontal or otherwise), examine behaviour of a function as $x \rightarrow \infty$ and $x \rightarrow-\infty$ and hence sketch the graph of the function (ACMMMO95) \%
- solve optimisation problems for any of the functions covered in the scope of this syllabus, in a wide variety of contexts including displacement, velocity, acceleration, area, volume, business, finance and growth and decay AAM \&
- define variables and construct functions to represent the relationships between variables related to contexts involving optimisation, sketching diagrams or completing diagrams if necessary
- use calculus to establish the location of local and global maxima and minima, including checking endpoints of an interval if required
- evaluate solutions and their reasonableness given the constraints of the domain and formulate appropriate conclusions to optimisation problems

2324 A gardener wants to build a rectangular
MA garden of area $50 \mathrm{~m}^{2}$ against an existing wall as shown in the diagram. A concrete path of width 1 metre is to be built around the other three sides of the garden.
Let x and y be the dimensions, in metres, of the outer rectangle as shown.

(a) Show that $y=\frac{50}{x-2}+1$.
(b) Find the value of x such that the area of the concrete path is a minimum.
 Show that your answer gives a minimum area.

NESA 2023 Mathematics Advanced HSC Examination
2330 Let $f(x)=e^{-x \sin x}$.

MA
(a) Find the coordinates of the stationary points of $f(x)$ for $0 \leq x \leq 2 \pi$. You do NOT need to check the nature of the stationary points.
(b) Without using any further calculus, sketch the graph of $f(x)$ for $0 \leq x \leq 2 \pi$, showing stationary points and intercepts. \square
NESA 2023 Mathematics Advanced HSC Examination

[^0]NESA 2022 Mathematics Advanced HSC Examination

22
22 Find the global maximum and minimum values of $y=x^{3}-6 x^{2}+8$,
MA where $-1 \leq x \leq 7$.

NESA 2022 Mathematics Advanced HSC Examination
2227 Let $f(x)=x e^{-2 x}$.
MA \quad It is given that $f^{\prime}(x)=e^{-2 x}-2 x e^{-2 x}$.
(a) Show that $f^{\prime \prime}(x)=4(x-1) e^{-2 x}$.
(b) Find any stationary points of $f(x)$ and determine their nature.
(c) Sketch the curve $y=x e^{-2 x}$, showing any stationary points, points of inflection and intercepts with the axes.

Solution

2021 Hot tea is poured into a cup.
Solution
MA The temperature of tea can be modelled by $T=25+70(1.5)^{-0.4 t}$, where T is the temperature of the tea, in degrees Celsius, t minutes after it is poured.
(a) What is the temperature of the tea 4 minutes after it has been poured?
(b) At what rate is the tea cooling 4 minutes after it has been poured?

1
2
3
NESA 2020 Mathematics Advanced HSC Examination

2025 A landscape gardener wants to build a

The garden bed is required to have an area of $36 \mathrm{~m}^{2}$ and to have a perimeter which is as small as possible. Let P metres be the perimeter of the garden bed.
(a) Show that $P=2 x+\frac{72}{x}$.
(b) Find the smallest possible perimeter of the garden bed, showing why this is the minimum perimeter.

3

4

NESA 2020 Mathematics Advanced HSC Examination

20
MA
31 The population of mice on an isolated island can be modelled by the function $m=a \sin \left(\frac{\pi}{26} t\right)+b$, where t is the time in weeks and $0 \leq t \leq 52$. The population of mice reaches a maximum of 35000 when $t=13$ and a minimum of 5000 when $t=39$.
The graph of $m(t)$ is shown.

(a) What are the values of a and b ?
(b) On the same island, the population of cats can be modelled by the function
$c(t)=-80 \cos \left(\frac{\pi}{26}(t-10)\right)+120$.
Consider the graph of $m(t)$ and the graph of $c(t)$.
Find the values of $t, 0 \leq t \leq 52$, for which both populations are increasing.
(c) Find the rate of change of the mice population when the cat population reaches a maximum.

NESA 2020 Mathematics Advanced HSC Examination
MA $\quad 14 \quad$ A function is given by $f(x)=18 x^{2}-x^{4}$.
$\begin{array}{llll}\text { SP } & \begin{array}{ll}\text { Band } & \text { (a) Find the stationary points and determine their nature. } \\ & \mathbf{2 - 5}\end{array} & \text { (b) Sketch the curve, labelling the stationary points and }\end{array}$
(b) Sketch the curve, labelling the stationary points and axis intercepts.

NESA 2019 Mathematics HSC Examination

1912 The number of leaves, $L(t)$, on a tree t days after the start of autumn can be
Solution M C modelled by $L(t)=200000 e^{-0.14 t}$.
(i) What is the number of leaves on the tree when $t=31$?
(ii) What is the rate of change of the number of leaves on the tree when $t=31$?
(iii) For what value of t are there 100 leaves on the tree?

NESA 2019 Mathematics HSC Examination
1914 The derivative of a function $y=f(x)$ is given by $f^{\prime}(x)=3 x^{2}+2 x-1$.
M b (i) Find the x-values of the two stationary points of $y=f(x)$, and determine the
nature of the stationary points.
(ii) The curve passes through the point (0,4). Find an expression for $f(x)$.
(iii) Hence sketch the curve, clearly indicating the stationary points.
(iv) For what values of x is the curve concave down?

Solution

NESA 2019 Mathematics HSC Examination
1915 The entry points, R and Q, to a national
 park can be reached via two straight access roads. The access roads meet the national park boundaries at right angles. The corner, P, of the national park is 8 km from R and 1 km from Q. The boundaries of the national park form a right angle at P.
A new straight road is to be built joining these roads and passing through P. Points A and B on the access roads are to be chosen to minimise the distance, $D \mathrm{~km}$, from A to B along the new road. Let the distance $Q A$ be $x \mathrm{~km}$.
(i) Show that $D^{2}=(x+8)^{2}+\left(\frac{8}{x}+1\right)^{2}$

3

3
NESA 2019 Mathematics HSC Examination

Year 12: Statistical Analysis S3.1 Continuous Random Variables

Syllabus: updated November 2019. Latest version @

https://educationstandards.nsw.edu.au/wps/portal/nesa/11-12/stage-6-learning-areas/stage-6-mathematics/mathematics-advanced-2017
Students:

- use relative frequencies and histograms obtained from data to estimate probabilities associated with a continuous random variable (ACMMM164)
- understand and use the concepts of a probability density function of a continuous random variable

AAM

- know the two properties of a probability density function: $f(x) \geq 0$ for all real x and $\int_{-\infty}^{\infty} f(x) d x=1$
- define the probability as the area under the graph of the probability density function using the notation $P(X \leq r)=\int_{a}^{r} f(x) d x$, where $f(x)$ is the probability density function defined on [a,b]
- examine simple types of continuous random variables and use them in appropriate contexts中
- explore properties of a continuous random variable that is uniformly distributed
- find the mode from a given probability density function
- obtain and analyse a cumulative distribution function with respect to a given probability density function
- understand the meaning of a cumulative distribution function with respect to a given probability density function
- use a cumulative distribution function to calculate the median and other percentiles

$$
f(x)= \begin{cases}12 x^{2}(1-x), & \text { for } 0 \leq x \leq 1 \\ 0, & \text { for all other values of } x\end{cases}
$$

(a) Find the mode of X.
(b) Find the cumulative distribution function for the given probability density function.
(c) Without calculating the median, show that the mode is greater than the median.

2
2
2

Solution
29 A continuous random variable X has probability density function $f(x)$ given by

NESA 2023 Mathematics Advanced HSC Examination

227 | Consider the following graph |
| :--- |
| MA |
| density function $f(x)$. |
| What is the value of the mo |
| A. $\frac{1}{\pi}$ |
| C. $\frac{\pi}{4}$ |

1

NESA 2022 Mathematics Advanced HSC Examination

2230 A continuous random variable X has cumulative
MA distribution function given by:
(a) Show that $k=3$.
(b) Given that $P(X<c)=2 P(X>c)$, find the exact value of c.

$$
F(x)= \begin{cases}1 & x>e^{3} \\ \frac{1}{k} \ln x & 1 \leq x \leq e^{3} . \\ 0 & x<1\end{cases}
$$

NESA 2022 Mathematics Advanced HSC Examination

2130 The number of hours for which light bulbs will work before failing can be modelled by the random variable X with cumulative distribution function.

$$
F(x)= \begin{cases}1-e^{-0.01 x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Jane sells light bulbs and promises that they will work for longer than exactly 99% of all light bulbs. Find how long, according to Jane's promise, a light bulb bought from her should work. Give your answer in hours, rounded to two decimal place

NESA 2021 Mathematics Advanced HSC Examination
2133 People are given a maximum of six hours to complete a puzzle. The time spent on the MA puzzle, in hours, can be modelled using the continuous random variable X which has probability density function

$$
f(x)= \begin{cases}\frac{A x}{x^{2}+4}, & \text { for } 0 \leq x \leq 6,(\text { where } A>0) \\ 0, & \text { for all other values of } x\end{cases}
$$

2 Solution

(a) Show that $A=\frac{2}{\ln 10}$.

2
2
2
2

The graph of the probability density function is shown below. The graph has a local maximum.
(b) Show that the mode of X is two hours.
(c) Show that $P(X<2)=\log _{10} 2$.
(d) The Intelligence Quotient (IQ) scores of people are normally distributed with a mean of 100 and standard deviation of 15 . It has been observed that the puzzle is generally completed more quickly by people with a high IQ. It is known that 80% of people with an IQ greater than 130 can complete the puzzle in less than two hours. A person chosen at random can complete the puzzle in less than two hours.

What is the probability that this person has an IQ greater than 130 ? Give your answer correct to three decimal places.

2023 A continuous random variable, X, has the following probability density functions.
Solution
MA

$$
f(x)= \begin{cases}\sin x & \text { for } 0 \leq x \leq k \\ 0 & \text { for all other values of } \mathrm{k}\end{cases}
$$

(a) Find the value of k.

(b) Find $P(X \leq 1)$. Give your answer correct to four decimal places.

NESA 2020 Mathematics Advanced HSC Examination

MA $\quad \mathbf{3 1}$ A bid made at an auction for a real estate property, in millions of dollars, can be
Solution
SP $\begin{array}{cc}\text { Band } \\ 3-6\end{array}$ modelled by the random variable X with the probability density function

$$
f(x)= \begin{cases}k\left(16-x^{2}\right) & 1 \leq x \leq 4 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Show that the value of k is $\frac{1}{27}$.

NESA Mathematics Advanced Sample Examination Paper (2020)

MA	$\mathbf{1 3}$	A continuous random variable X has a probability density function f given by	4 Solution
SQ	Band		
$\mathbf{2 0 1 9}$	$\mathbf{2 - 5}$		

0 \& elsewhere\end{cases}\)
where A and B are constants.
The median of X is 2 .
Find the values of A and B.
NESA Mathematics Advanced Sample examination materials (2019)
TG 1 Let X be a continuous random variable whose probability density function is $f(x)=3 x^{2}$
Solution for $0<x<1$.
(a) What is the probability that X falls between $\frac{1}{2}$ and 1 ?
(b) Show that $P\left(X=\frac{1}{2}\right)=0$.

NESA Mathematics Advanced Year 12 Topic Guide: Statistical Analysis
TG 2
Let X be a continuous random variable whose probability density function is $f(x)=\frac{x^{3}}{4}$ for an interval $0<x<c$.
What is the value of the constant c that makes $f(x)$ a valid probability density function?
NESA Mathematics Advanced Year 12 Topic Guide: Statistical Analysis
TG 3 Let X be a continuous random variable with the following probability density function:
$f(x)=\frac{1}{2}$ for $0<x<2$.
What are the lower quartile, median and upper quartile of X ?
NESA Mathematics Advanced Year 12 Topic Guide: Statistical Analysis

2023 HSC Paper

231 The number of bees leaving a hive was observed and recorded over 14 days at different times of the day.
Which Pearson's correlation coefficient best describes the observations?
A. -0.8
B. -0.2
C. 0.2
D. 0.8

1

COMMON QUESTION: NESA 2023 Mathematics Standard 2 and Advanced HSC Examinations
232 A game involves throwing a die and spinning MA a spinner.

The sum of the two numbers obtained is the score. The table of scores below is partially completed.

1 Solution

What is the probability of getting a score of 7 or more?
A. $\frac{1}{6}$
B. $\frac{1}{4}$
C. $\frac{5}{18}$
D. $\frac{5}{12}$

		SPINNER			
	1	2	3	4	
ω	1	2	3	4	
	2	3	4	5	
	3		5	6	
	4			7	
	5				
	6				

COMMON QUESTION: NESA 2023 Mathematics Standard 2 and Advanced HSC Examinations
$\begin{array}{ll}23 & 3 \\ \text { MA }\end{array}$ What is the domain of $f(x)=\frac{1}{\sqrt{1-x}}$?
A. $x<1$
B. $x \leq 1$
C. $x>1$
D. $x \geq 1$

NESA 2023 Mathematics Advanced HSC Examination
234 The graph of a polynomial is shown.
MA Which row of the table is correct for this polynomial?
A.

	Equation	Value of b	Value of c
A.	$y=-(x-b)(x-c)^{2}$	$b>0$	$c<0$
B.	$y=-(x-b)(x-c)^{2}$	$b<0$	$c>0$
C.	$y=-x(x-b)(x-c)$	$b>0$	$c<0$
D.	$y=-x(x-b)(x-c)$	$b<0$	$c>0$

ris

235 The diagram shows the graph $y=f(x)$, MA where $f(x)$ is an odd function.

The shaded area is 1 square unit.
The number a, where $a>1$, is chosen so that $\int_{0}^{a} f(x) d x=0$.

What is the value of $\int_{-a}^{1} f(x) d x$?

1 Solution
NOT TO SCALE
A. -1
B. 0
C. 1
D. 3

NESA 2023 Mathematics Advanced HSC Examination
236 The following table gives the signs of the
MA first and second derivatives of a function $y=f(x)$ for different values of x.

x	-2	0	2
$f^{\prime}(x)$	+	0	+
$f^{\prime \prime}(x)$	-	0	+

Which of the following is a possible sketch of $y=f(x)$?
A.

NESA 2023 Mathematics Advanced HSC Examination
237
It is given that $y=f(g(x))$, where $f(1)=3, f^{\prime}(1)=-4, g(5)=1$ and $g^{\prime}(5)=2$.
MA
What is the value of y^{\prime} at $x=5$?
A. -8
B. -4
C. 3
D. 6

NESA 2023 Mathematics Advanced HSC Examination
238 What is the solution of the equation $\log _{a} x^{3}=b$, where a and b are positive constants?
MA
A. $x=b^{\frac{a}{3}}$
B. $x=a^{\frac{b}{3}}$
C. $x=\frac{b^{a}}{3}$
D. $x=\frac{a^{b}}{3}$

NESA 2023 Mathematics Advanced HSC Examination

$23 \quad 9$
 MA

Let $f(x)$ be any function with domain all real numbers.
Which of the following is an even function, regardless of the choice of $f(x)$?
A. $2 f(x)$
B. $f(f(x))$
C. $f(-x)^{2}$
D. $f(x) f(-x)$

NESA 2023 Mathematics Advanced HSC Examination

2310 The graph $y=x^{2}$ meets the line $y=k$ (where $k>0$)
MA at points P and Q as shown in the diagram.
The length of the interval $P Q$ is L.
Let a be a positive number. The graph $y=\frac{x^{2}}{a^{2}}$ meets the line $y=k$ at points S and T.
What is the length of $S T$?
A. $\frac{L}{a}$
B. $\frac{L}{a^{2}}$

1

NESA 2023 Mathematics Advanced HSC Examination
$23 \quad 11$

MA
The first three terms of an arithmetic sequence are 3, 7 and 11.
Find the 15th term.

NESA 2023 Mathematics Advanced HSC Examination
2

Solution
2312 The table shows the probability distribution of a MA discrete random variable.
(a) Show that the expected value $E(X)=2$.
(b) Calculate the standard deviation, correct to one decimal place.

x	0	1	2	3	4
$P(X=x)$	0	0.3	0.5	0.1	0.1

NESA 2023 Mathematics Advanced HSC Examination
2313
$\begin{array}{ll}23 \\ \text { MA } & \text { Let } P(t) \text { be a function such that } \frac{d P}{d t}=3000 e^{2 t} \text {. }\end{array}$
When $t=0, P=4000$.
Find an expression for $P(t)$.
2 Solution

NESA 2023 Mathematics Advanced HSC Examination
2314 Find the equation of the tangent to the curve $y=(2 x+1)^{3}$ at the point $(0,1)$.
MA

3 Solution

$23 \quad 15$ A table of future value interest factors

Rate	1.5%	3%	4.5%	6%
5	5.152	5.309	5.471	5.637
10	10.703	11.464	12.288	13.181
20	23.124	26.870	31.371	36.786
40	54.268	75.401	107.030	154.762

If the interest rate is 6% per annum compounding annually, how much should Micky contribute each year? Give your answer to the nearest dollar.
(b) Instead, Micky decides to contribute $\$ 8535$ every three months for 10 years to an

MA for an annuity of $\$ 1$ is shown.
(a) Micky wants to save $\$ 450000$ over the next 10 years. annuity paying 6% per annum, compounding quarterly.
How much will Micky have at the end of 10 years?
COMMON QUESTION: NESA 2023 Mathematics Standard 2 and Advanced HSC Examinations
2316 The diagram shows a shape $A P Q B C D$. The shape MA consists of a rectangle $A B C D$ with an arc $P Q$ on side $A B$ and with side lengths $B C=3.6 \mathrm{~m}$ and $C D=8.0 \mathrm{~m}$.

The arc $P Q$ is an arc of a circle with centre O and radius 2.1 m and $\angle P O Q=110^{\circ}$.

What is the perimeter of the shape $A P Q B C D$?

4

Give your answer correct to one decimal place.
COMMON QUESTION: NESA 2023 Mathematics Standard 2 and Advanced HSC Examinations
$23 \quad 17$

MA
Find $\int x \sqrt{x^{2}+1} d x$.

2318

A university uses gas to heat its buildings. Over a period of 10 weekdays during winter, the gas used each day was measured in megawatts (MW) and the average outside temperature each day was recorded in degrees Celsius (${ }^{\circ} \mathrm{C}$).

Using x as the average daily outside temperature and y as the total daily gas usage, the equation of the least-squares regression line was found.

The equation of the regression line predicts that when the temperature is $0^{\circ} \mathrm{C}$, the daily gas usage is 236 MW.
The ten temperatures measured were: $0^{\circ}, 0^{\circ}, 0^{\circ}, 2^{\circ}, 5^{\circ}, 7^{\circ}, 8^{\circ}, 9^{\circ}, 9^{\circ}, 10^{\circ}$.
The total gas usage for the ten weekdays was 1840 MW.
In any bivariate dataset, the least-squares regression line passes through the point (\bar{x}, \bar{y}), where \bar{x} is the sample mean of the x-values and \bar{y} is the sample mean of the y-values.
(a) Using the information provided, plot the point
(\bar{x}, \bar{y}) and the y-intercept of the least-squares regression line on the grid.
(b) What is the equation of the regression line?
(c) In the context of the dataset, identify ONE problem with using the regression line to predict gas usage when the average outside temperature is $23^{\circ} \mathrm{C}$.

3

COMMON QUESTION: NESA 2023 Mathematics Standard 2 and Advanced HSC Examinations

2319 (a) Sketch the graphs of the functions
MA
$f(x)=x-1$ and $g(x)=(1-x)(3+x)$ showing the x-intercepts.
(b) Hence, or otherwise, solve the inequality $x-1<(1-x)(3+x)$.

NESA 2023 Mathematics Advanced HSC Examination

2320
MA Find all the values of θ, where $0^{\circ} \leq \theta \leq 360^{\circ}$, such that $\sin \left(\theta-60^{\circ}\right)=-\frac{\sqrt{3}}{2}$.

23 MA

21
The fourth term of a geometric sequence is 48 .
The eighth term of the same sequence is $\frac{3}{16}$.
Find the possible value(s) of the common ratio and the corresponding first term(s).
NESA 2023 Mathematics Advanced HSC Examination
2322 In the rectangular prism shown, $A D=7 \mathrm{~cm}, A E=8 \mathrm{~cm}$, MA $E F=6 \mathrm{~cm}$. Point M is the midpoint of $C D$.

Find $\angle A E M$, to the nearest degree.

NESA 2023 Mathematics Advanced HSC Examination

23
MA

A random variable is normally distributed with a mean of 0 and a standard deviation of 1 . The table gives the probability that this random variable lies below z for some positive values of z.

z	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.39
Probability	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177

The probability values given in the table are represented by the shaded area in the following diagram.
The weights of adult male koalas form a normal distribution with mean $\mu=10.40 \mathrm{~kg}$, and standard deviation $\sigma=1.15 \mathrm{~kg}$.

In a group of 400 adult male koalas, how many would be expected to weigh more than 11.93 kg ?

2324 A gardener wants to build a rectangular MA garden of area $50 \mathrm{~m}^{2}$ against an existing wall as shown in the diagram. A concrete path of width 1 metre is to be built around the other three sides of the garden.

Let x and y be the dimensions, in metres, of the outer rectangle as shown.

(a) Show that $y=\frac{50}{x-2}+1$.
(b) Find the value of x such that the area of the concrete path is a minimum.

1
 Show that your answer gives a minimum area.

NESA 2023 Mathematics Advanced HSC Examination
2325 On the first day of November, Jia deposits $\$ 10000$ into a new account which earns MA 0.4% interest per month, compounded monthly. At the end of each month, after the interest is added to the account, Jia intends to withdraw $\$ M$ from the account. Let A_{n} be the amount (in dollars) in Jia's account at the end of n months.
(a) Show that $A_{2}=10000(1.004)^{2}-M(1.004)-M$
(b) Show that $A_{n}=(10000-250 M)(1.004)^{n}+250 M$.
(c) Jia wants to be able to make at least 100 withdrawals.

What is the largest value of M that will enable Jia to do this?
NESA 2023 Mathematics Advanced HSC Examination
26 A camera films the motion of a swing in a park.
Let $x(t)$ be the horizontal distance, in metres, from the camera to the seat of the swing at t seconds. The seat is released from rest at a horizontal distance of 11.2 m from the camera.

(a) The rate of change of x can be modelled by the equation $\frac{d x}{d t}=-1.5 \pi \sin \left(\frac{5 \pi}{4} t\right)$. Find an expression for $x(t)$.
(b) How many times does the swing reach the closest point to the camera during the first 10 seconds?

NESA 2023 Mathematics Advanced HSC Examination

2327 The graph of $y=f(x)$, where
MA $\quad f(x)=a|x-b|+c$, passes through the points $(3,-5),(6,7)$ and $(9,-5)$ as shown in the diagram.

Solution

3

2
2

NESA 2023 Mathematics Advanced HSC Examination
2328 The curve $y=f(x)$ is shown on the diagram.
MA The equation of the tangent to the curve at point $T(-1,6)$ is $y=x+7$. At a point R, another tangent parallel to the tangent at T is drawn.
The gradient function of the curve is given by $\frac{d y}{d x}=3 x^{2}-6 x-8$.
Find the coordinates of R.

4 Solution

NESA 2023 Mathematics Advanced HSC Examination

23 MA

29 A continuous random variable X has probability density function $f(x)$ given by

$$
f(x)= \begin{cases}12 x^{2}(1-x), & \text { for } 0 \leq x \leq 1 \\ 0, & \text { for all other values of } x\end{cases}
$$

(a) Find the mode of X.
(b) Find the cumulative distribution function for the given probability density function.
(c) Without calculating the median, show that the mode is greater than the median.

2
2
2

NESA 2023 Mathematics Advanced HSC Examination
Let $f(x)=e^{-x \sin x}$.
(a) Find the coordinates of the stationary points of $f(x)$ for $0 \leq x \leq 2 \pi$.
You do NOT need to check the nature of the stationary points.
(b) Without using any further calculus, sketch the graph of $f(x)$ for $0 \leq x \leq 2 \pi$, showing stationary points and intercepts.

3

2
Solution

NESA 2023 Mathematics Advanced HSC Examination

2331 Four Year 12 students want to organise a graduation party. All four students have the MA same probability, $P(F)$, of being available next Friday. All four students have the same probability, $P(S)$, of being available next Saturday.
It is given that $P(F)=\frac{3}{10}, P(S \mid F)=\frac{1}{3}$, and $P(F \mid S)=\frac{1}{8}$.
Kim is one of the four students.
(a) Is Kim's availability next Friday independent from his availability next Saturday? Justify your answer.
(b) Show that the probability that Kim is available next Saturday is $\frac{4}{5}$.

1
Solution

(c) What is the probability that at least one of the four students is NOT available

NESA 2023 Mathematics Advanced HSC Examination
23
MA The curves $y=e^{-2 x}$ and $y=e^{-x}-\frac{1}{4}$ intersect at exactly one point as shown in the diagram. The point of intersection has coordinates $\left(\ln 2, \frac{1}{4}\right)$.
(Do NOT prove this.)
(a) Show that the area bounded by the two curves and the y-axis, as shaded

Solution

3

3

in the diagram, is $\frac{1}{4} \ln 2-\frac{1}{8}$.
(b) Find the values of k such that the curves $y=e^{-2 x}$ and $y=e^{-x}+k$ intersect at two points.

NESA 2023 Mathematics Advanced HSC Examination

[^0]: 2220 A scientist is studying the growth of bacteria.
 MA The scientist models the number of bacteria, N, by the equation $N(t)=200 e^{0.013 t}$, where t is the number of hours after starting the experiment.
 (a) What is the initial number of bacteria in the experiment?
 (b) What is the number of bacteria 24 hours after starting the experiment?
 (c) What is the rate of increase in the number of bacteria 24 hours after starting the experiment?

